Bayesian Semiparametric Modelling in Quantile Regression

被引:100
|
作者
Kottas, Athanasios [1 ]
Krnjajic, Milovan [2 ]
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
censoring; dependent Dirichlet processes; Dirichlet process mixture models; median regression; scale uniform mixtures; skewness; INFERENCE; SURVIVAL; MIXTURES; DENSITY;
D O I
10.1111/j.1467-9469.2008.00626.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non-parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non-parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.
引用
收藏
页码:297 / 319
页数:23
相关论文
共 50 条
  • [1] Bayesian semiparametric additive quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    Yue, Yu Ryan
    Lang, Stefan
    Flexeder, Claudia
    [J]. STATISTICAL MODELLING, 2013, 13 (03) : 223 - 252
  • [2] Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach
    Tokdar, Surya T.
    Kadane, Joseph B.
    [J]. BAYESIAN ANALYSIS, 2012, 7 (01): : 51 - 71
  • [3] Bayesian quantile semiparametric mixed-effects double regression models
    Zhang, Duo
    Wu, Liucang
    Ye, Keying
    Wang, Min
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) : 303 - 315
  • [4] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Xuejun Jiang
    Yunxian Li
    Aijun Yang
    Ruowei Zhou
    [J]. Empirical Economics, 2020, 58 : 2085 - 2103
  • [5] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Jiang, Xuejun
    Li, Yunxian
    Yang, Aijun
    Zhou, Ruowei
    [J]. EMPIRICAL ECONOMICS, 2020, 58 (05) : 2085 - 2103
  • [6] A semiparametric Bayesian approach for joint-quantile regression with clustered data
    Jang, Woosung
    Wang, Huixia Judy
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 99 - 115
  • [7] Bayesian estimation and application of semiparametric spatial lag quantile regression model
    Fang, Liting
    Li, Kunming
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2024, 44 (10): : 3346 - 3361
  • [8] A spatial semiparametric M-quantile regression for hedonic price modelling
    Francesco Schirripa Spagnolo
    Riccardo Borgoni
    Antonella Carcagnì
    Alessandra Michelangeli
    Nicola Salvati
    [J]. AStA Advances in Statistical Analysis, 2024, 108 : 159 - 183
  • [9] A spatial semiparametric M-quantile regression for hedonic price modelling
    Spagnolo, Francesco Schirripa
    Borgoni, Riccardo
    Carcagni, Antonella
    Michelangeli, Alessandra
    Salvati, Nicola
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (01) : 159 - 183
  • [10] Semiparametric quantile regression with random censoring
    Bravo, Francesco
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 265 - 295