Bayesian Semiparametric Modelling in Quantile Regression

被引:101
|
作者
Kottas, Athanasios [1 ]
Krnjajic, Milovan [2 ]
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
censoring; dependent Dirichlet processes; Dirichlet process mixture models; median regression; scale uniform mixtures; skewness; INFERENCE; SURVIVAL; MIXTURES; DENSITY;
D O I
10.1111/j.1467-9469.2008.00626.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non-parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non-parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.
引用
下载
收藏
页码:297 / 319
页数:23
相关论文
共 50 条
  • [21] Bayesian bivariate quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    STATISTICAL MODELLING, 2015, 15 (04) : 326 - 344
  • [22] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [23] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556
  • [24] Bayesian Spatial Quantile Regression
    Reich, Brian J.
    Fuentes, Montserrat
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 6 - 20
  • [25] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [26] BAYESIAN QUANTILE REGRESSION METHODS
    Lancaster, Tony
    Jun, Sung Jae
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (02) : 287 - 307
  • [27] Semiparametric regression modelling of current status competing risks data: a Bayesian approach
    Pavithra Hariharan
    P. G. Sankaran
    Computational Statistics, 2024, 39 : 2083 - 2108
  • [28] Semiparametric regression modelling of current status competing risks data: a Bayesian approach
    Hariharan, Pavithra
    Sankaran, P. G.
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 2083 - 2108
  • [29] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [30] Bayesian approach to additive semiparametric regression
    Wong, CM
    Kohn, R
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 209 - 235