Semiparametric quantile regression with random censoring

被引:5
|
作者
Bravo, Francesco [1 ]
机构
[1] Univ York, Dept Econ, York YO10 5DD, N Yorkshire, England
关键词
Inverse probability of censoring; Local linear estimation; M-M algorithm; MEDIAN REGRESSION; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; MODELS; ESTIMATOR;
D O I
10.1007/s10463-018-0688-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan-Meier, a fully parametric and the conditional Kaplan-Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.
引用
收藏
页码:265 / 295
页数:31
相关论文
共 50 条
  • [1] Semiparametric quantile regression with random censoring
    Francesco Bravo
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 265 - 295
  • [2] Quantile regression under random censoring
    Honoré, B
    Khan, S
    Powell, JL
    [J]. JOURNAL OF ECONOMETRICS, 2002, 109 (01) : 67 - 105
  • [3] Semiparametric Approach to a Random Effects Quantile Regression Model
    Kim, Mi-Ok
    Yang, Yunwen
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1405 - 1417
  • [4] Weighted composite quantile regression with censoring indicators missing at random
    Wang, Jiang-Feng
    Jiang, Wei-Jun
    Xu, Fang-Yin
    Fu, Wu-Xin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (12) : 2900 - 2917
  • [5] Support vector censored quantile regression under random censoring
    Shim, Jooyong
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 912 - 919
  • [6] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (01): : 21 - 36
  • [7] Quantile regression with censoring and endogeneity
    Chernozhukov, Victor
    Fernandez-Val, Ivan
    Kowalski, Amanda E.
    [J]. JOURNAL OF ECONOMETRICS, 2015, 186 (01) : 201 - 221
  • [8] Quantile regression for panel data models with fixed effects under random censoring
    Dai Xiaowen
    Jin Libin
    Tian Yuzhu
    Tian Maozai
    Tang Manlai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4430 - 4445
  • [9] Quantile regression with censoring and sample selection
    Chen, Songnian
    Wang, Qian
    [J]. JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 205 - 226
  • [10] Semiparametric Hierarchical Composite Quantile Regression
    Chen, Yanliang
    Tang, Man-Lai
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (05) : 996 - 1012