Quantile regression under random censoring

被引:68
|
作者
Honoré, B
Khan, S [1 ]
Powell, JL
机构
[1] Univ Rochester, Dept Econ, Rochester, NY 14627 USA
[2] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[3] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA
关键词
censored quantile regression; random censoring; Kaplan-Meier product limit estimator; accelerated failure time model;
D O I
10.1016/S0304-4076(01)00142-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
Censored regression models have received a great deal of attention in both the theoretical and applied econometric literature. Most of the existing estimation procedures for either cross-sectional or panel data models are designed only for models with fixed censoring. In this paper, a new procedure for adapting these estimators designed for fixed censoring to models with random censoring is proposed. This procedure is then applied to the CLAD and quantile estimators of Powell (J. Econom. 25 (1984) 303, 32 (1986a) 143) to obtain an estimator of the coefficients under a mild conditional quantile restriction on the error term that is applicable to samples exhibiting fixed or random censoring. The resulting estimator is shown to have desirable asymptotic properties, and performs well in a small-scale simulation study. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 105
页数:39
相关论文
共 50 条
  • [1] Support vector censored quantile regression under random censoring
    Shim, Jooyong
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 912 - 919
  • [2] Semiparametric quantile regression with random censoring
    Francesco Bravo
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 265 - 295
  • [3] Semiparametric quantile regression with random censoring
    Bravo, Francesco
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 265 - 295
  • [4] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. ECONOMETRICS JOURNAL, 2024, 27 (01): : 21 - 36
  • [5] The Quantile Process under Random Censoring
    Wagener, J.
    Volgushev, S.
    Dette, H.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2012, 21 (02) : 127 - 141
  • [6] The quantile process under random censoring
    J. Wagener
    S. Volgushev
    H. Dette
    [J]. Mathematical Methods of Statistics, 2012, 21 (2) : 127 - 141
  • [7] Quantile regression for panel data models with fixed effects under random censoring
    Dai Xiaowen
    Jin Libin
    Tian Yuzhu
    Tian Maozai
    Tang Manlai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4430 - 4445
  • [8] Nonparametric test for checking lack of fit of the quantile regression model under random censoring
    Wang, Lan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (02): : 321 - 336
  • [9] Weighted composite quantile regression with censoring indicators missing at random
    Wang, Jiang-Feng
    Jiang, Wei-Jun
    Xu, Fang-Yin
    Fu, Wu-Xin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (12) : 2900 - 2917
  • [10] CONFIDENCE BANDS FOR THE QUANTILE FUNCTION UNDER RANDOM CENSORING
    EINMAHL, JHJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (01) : 69 - 75