Quantile regression under random censoring

被引:68
|
作者
Honoré, B
Khan, S [1 ]
Powell, JL
机构
[1] Univ Rochester, Dept Econ, Rochester, NY 14627 USA
[2] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[3] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA
关键词
censored quantile regression; random censoring; Kaplan-Meier product limit estimator; accelerated failure time model;
D O I
10.1016/S0304-4076(01)00142-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
Censored regression models have received a great deal of attention in both the theoretical and applied econometric literature. Most of the existing estimation procedures for either cross-sectional or panel data models are designed only for models with fixed censoring. In this paper, a new procedure for adapting these estimators designed for fixed censoring to models with random censoring is proposed. This procedure is then applied to the CLAD and quantile estimators of Powell (J. Econom. 25 (1984) 303, 32 (1986a) 143) to obtain an estimator of the coefficients under a mild conditional quantile restriction on the error term that is applicable to samples exhibiting fixed or random censoring. The resulting estimator is shown to have desirable asymptotic properties, and performs well in a small-scale simulation study. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 105
页数:39
相关论文
共 50 条
  • [21] A MODIFIED KERNEL QUANTILE ESTIMATOR UNDER CENSORING
    LIO, YL
    PADGETT, WJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1988, 16 (02): : 175 - 183
  • [22] Quantile regression adjusting for dependent censoring from semicompeting risks
    Li, Ruosha
    Peng, Limin
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 107 - 130
  • [23] Quantile regression models for survival data with missing censoring indicators
    Qiu, Zhiping
    Ma, Huijuan
    Chen, Jianwei
    Dinse, Gregg E.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (05) : 1320 - 1331
  • [24] Random projections for quantile ridge regression
    Zhou, Yan
    Liang, Jiang
    Hu, Yaohua
    Lian, Heng
    [J]. STAT, 2021, 10 (01):
  • [25] QUANTILE REGRESSION WITH COVARIATES MISSING AT RANDOM
    Wei, Ying
    Yang, Yunwen
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1277 - 1299
  • [26] QUANTILE QUANTILE PLOTS UNDER RANDOM CENSORSHIP
    ALY, EEAA
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 15 (01) : 123 - 128
  • [27] Quantile Regression For Longitudinal Biomarker Data Subject to Left Censoring and Dropouts
    Lee, Minjae
    Kong, Lan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (21) : 4628 - 4641
  • [28] Regression quantiles under dependent censoring
    Veraverbeke, N
    [J]. STATISTICS, 2006, 40 (02) : 117 - 128
  • [29] Semi-Parametric Estimator of the Quantile in an Informative Model of Random Censoring
    Abdushukurov A.A.
    Holmurodov F.M.
    [J]. Journal of Mathematical Sciences, 2022, 267 (1) : 117 - 121
  • [30] Statistics of extremes under random censoring
    Einmahl, John H. J.
    Fils-Villetard, Amtlie
    Guillou, Armelle
    [J]. BERNOULLI, 2008, 14 (01) : 207 - 227