Random projections for quantile ridge regression

被引:3
|
作者
Zhou, Yan [1 ]
Liang, Jiang [1 ]
Hu, Yaohua [1 ]
Lian, Heng [2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
STAT | 2021年 / 10卷 / 01期
关键词
dimension reduction; linear quantile regression; random projection; ridge regression; SELECTION; ENSEMBLE;
D O I
10.1002/sta4.386
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression estimate gives more complete information about the response distribution but is more costly to compute than mean regression. When the dimension is large, a ridge penalty is conventionally used to stabilize the estimate and achieve better bias-variance trade-off. We investigate a random projection approach to ease the computational burden and establish its statistical properties. Monte Carlo studies are carried out to illustrate the computational and statistical properties of the estimates.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Accumulations of Projections-A Unified Framework for Random Sketches in Kernel Ridge Regression
    Chen, Yifan
    Yang, Yun
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [2] Random projections for Bayesian regression
    Leo N. Geppert
    Katja Ickstadt
    Alexander Munteanu
    Jens Quedenfeld
    Christian Sohler
    Statistics and Computing, 2017, 27 : 79 - 101
  • [3] Linear Regression With Random Projections
    Maillard, Odalric-Ambrym
    Munos, Remi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2735 - 2772
  • [4] Random projections for Bayesian regression
    Geppert, Leo N.
    Ickstadt, Katja
    Munteanu, Alexander
    Quedenfeld, Jens
    Sohler, Christian
    STATISTICS AND COMPUTING, 2017, 27 (01) : 79 - 101
  • [5] Semiparametric quantile regression with random censoring
    Francesco Bravo
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 265 - 295
  • [6] Semiparametric quantile regression with random censoring
    Bravo, Francesco
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 265 - 295
  • [7] QUANTILE REGRESSION WITH COVARIATES MISSING AT RANDOM
    Wei, Ying
    Yang, Yunwen
    STATISTICA SINICA, 2014, 24 (03) : 1277 - 1299
  • [8] Quantile regression under random censoring
    Honoré, B
    Khan, S
    Powell, JL
    JOURNAL OF ECONOMETRICS, 2002, 109 (01) : 67 - 105
  • [9] Random Design Analysis of Ridge Regression
    Daniel Hsu
    Sham M. Kakade
    Tong Zhang
    Foundations of Computational Mathematics, 2014, 14 : 569 - 600
  • [10] Random Design Analysis of Ridge Regression
    Hsu, Daniel
    Kakade, Sham M.
    Zhang, Tong
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (03) : 569 - 600