A spatial semiparametric M-quantile regression for hedonic price modelling

被引:0
|
作者
Francesco Schirripa Spagnolo
Riccardo Borgoni
Antonella Carcagnì
Alessandra Michelangeli
Nicola Salvati
机构
[1] Università di Pisa,
[2] Università Degli Studi di Milano-Bicocca,undefined
来源
关键词
Robust method; Hedonic regression; Penalised splines; Spatial data;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes an M-quantile regression approach to address the heterogeneity of the housing market in a modern European city. We show how M-quantile modelling is a rich and flexible tool for empirical market price data analysis, allowing us to obtain a robust estimation of the hedonic price function whilst accounting for different sources of heterogeneity in market prices. The suggested methodology can generally be used to analyse nonlinear interactions between prices and predictors. In particular, we develop a spatial semiparametric M-quantile model to capture both the potential nonlinear effects of the cultural environment on pricing and spatial trends. In both cases, nonlinearity is introduced into the model using appropriate bases functions. We show how the implicit price associated with the variable that measures cultural amenities can be determined in this semiparametric framework. Our findings show that the effect of several housing attributes and urban amenities differs significantly across the response distribution, suggesting that buyers of lower-priced properties behave differently than buyers of higher-priced properties.
引用
下载
收藏
页码:159 / 183
页数:24
相关论文
共 50 条
  • [1] A spatial semiparametric M-quantile regression for hedonic price modelling
    Spagnolo, Francesco Schirripa
    Borgoni, Riccardo
    Carcagni, Antonella
    Michelangeli, Alessandra
    Salvati, Nicola
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (01) : 159 - 183
  • [2] Semiparametric M-quantile regression with measurement error in spatial covariates: an application to housing price modelling
    Borgoni, Riccardo
    Spagnolo, Francesco Schirripa
    Michelangeli, Alessandra
    Salvati, Nicola
    Carcagni, Antonella
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (01) : 82 - 103
  • [3] Adaptive semiparametric M-quantile regression
    Otto-Sobotka, Fabian
    Salvati, Nicola
    Ranalli, Maria Giovanna
    Kneib, Thomas
    ECONOMETRICS AND STATISTICS, 2019, 11 : 116 - 129
  • [4] Semiparametric M-quantile regression for count data
    Dreassi, Emanuela
    Ranalli, M. Giovanna
    Salvati, Nicola
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 591 - 610
  • [5] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [6] Expectile and M-quantile regression for panel data
    Danilevicz, Ian Meneghel
    Reisen, Valderio Anselmo
    Bondon, Pascal
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [7] Bayesian Semiparametric Modelling in Quantile Regression
    Kottas, Athanasios
    Krnjajic, Milovan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) : 297 - 319
  • [8] Parametric modelling of M-quantile regression coefficient functions with application to small area estimation
    Frumento, Paolo
    Salvati, Nicola
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 229 - 250
  • [9] Parametric modelling of M-quantile regression coefficient functions with application to small area estimation
    Frumento, Paolo
    Salvati, Nicola
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, : 229 - 250
  • [10] Marginal M-quantile regression for multivariate dependent data
    Merlo, Luca
    Petrella, Lea
    Salvati, Nicola
    Tzavidis, Nikos
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 173