Expectile and M-quantile regression for panel data

被引:0
|
作者
Danilevicz, Ian Meneghel [1 ,2 ]
Reisen, Valderio Anselmo [1 ,2 ,3 ,4 ]
Bondon, Pascal [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, Brazil
[2] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gi Sur Yvette, France
[3] Univ Fed Espirito Santo, Grad Program Environm Engineer, Grad Program Econ, Vitoria, Brazil
[4] Univ Fed Bahia, Inst Math & Stat, Salvador, Brazil
关键词
Quantile regression; Expectile; M-estimation; Repeated measures; LASSO; PERFORMANCE; EXPORTS; MODELS;
D O I
10.1007/s11222-024-10396-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear fixed effect models are a general way to fit panel or longitudinal data with a distinct intercept for each unit. Based on expectile and M-quantile approaches, we propose alternative regression estimation methods to estimate the parameters of linear fixed effect models. The estimation functions are penalized by the least absolute shrinkage and selection operator to reduce the dimensionality of the data. Some asymptotic properties of the estimators are established, and finite sample size investigations are conducted to verify the empirical performances of the estimation methods. The computational implementations of the procedures are discussed, and real economic panel data from the Organisation for Economic Cooperation and Development are analyzed to show the usefulness of the methods in a practical problem.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Semiparametric M-quantile regression for count data
    Dreassi, Emanuela
    Ranalli, M. Giovanna
    Salvati, Nicola
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 591 - 610
  • [2] Marginal M-quantile regression for multivariate dependent data
    Merlo, Luca
    Petrella, Lea
    Salvati, Nicola
    Tzavidis, Nikos
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 173
  • [3] M-Quantile Small Area Estimation for Panel Data
    Bianchi, Annamaria
    [J]. TOPICS IN THEORETICAL AND APPLIED STATISTICS, 2016, : 123 - 131
  • [4] Adaptive semiparametric M-quantile regression
    Otto-Sobotka, Fabian
    Salvati, Nicola
    Ranalli, Maria Giovanna
    Kneib, Thomas
    [J]. ECONOMETRICS AND STATISTICS, 2019, 11 : 116 - 129
  • [5] M-quantile Regression Analysis of Temporal Gene Expression Data
    Vinciotti, Veronica
    Yu, Keming
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [6] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    [J]. STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [7] Nonparametric M-quantile regression using penalised splines
    Pratesi, Monica
    Ranalli, M. Giovanna
    Salvati, Nicola
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (03) : 287 - 304
  • [8] M-quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study
    Alfo, Marco
    Marino, Maria Francesca
    Ranalli, Maria Giovanna
    Salvati, Nicola
    Tzavidis, Nikos
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (01) : 122 - 146
  • [9] A spatial semiparametric M-quantile regression for hedonic price modelling
    Francesco Schirripa Spagnolo
    Riccardo Borgoni
    Antonella Carcagnì
    Alessandra Michelangeli
    Nicola Salvati
    [J]. AStA Advances in Statistical Analysis, 2024, 108 : 159 - 183
  • [10] A spatial semiparametric M-quantile regression for hedonic price modelling
    Spagnolo, Francesco Schirripa
    Borgoni, Riccardo
    Carcagni, Antonella
    Michelangeli, Alessandra
    Salvati, Nicola
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (01) : 159 - 183