FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
  • [31] Interactive context-aware network for RGB-T salient object detection
    Wang, Yuxuan
    Dong, Feng
    Zhu, Jinchao
    Chen, Jianren
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 72153 - 72174
  • [32] WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection
    Zhou, Wujie
    Sun, Fan
    Jiang, Qiuping
    Cong, Runmin
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3027 - 3039
  • [33] RGB-T salient object detection via excavating and enhancing CNN features
    Bi, Hongbo
    Zhang, Jiayuan
    Wu, Ranwan
    Tong, Yuyu
    Fu, Xiaowei
    Shao, Keyong
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25543 - 25561
  • [34] RGB-T salient object detection via excavating and enhancing CNN features
    Hongbo Bi
    Jiayuan Zhang
    Ranwan Wu
    Yuyu Tong
    Xiaowei Fu
    Keyong Shao
    Applied Intelligence, 2023, 53 : 25543 - 25561
  • [35] Cross-Collaboration Weighted Fusion Network for RGB-T Salient Detection
    Wang, Yumei
    Dongye, Changlei
    Zhao, Wenxiu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 301 - 312
  • [36] CAE-Net: Cross-Modal Attention Enhancement Network for RGB-T Salient Object Detection
    Lv, Chengtao
    Wan, Bin
    Zhou, Xiaofei
    Sun, Yaoqi
    Hu, Ji
    Zhang, Jiyong
    Yan, Chenggang
    ELECTRONICS, 2023, 12 (04)
  • [37] CFRNet: Cross-Attention-Based Fusion and Refinement Network for Enhanced RGB-T Salient Object Detection
    Deng, Biao
    Liu, Di
    Cao, Yang
    Liu, Hong
    Yan, Zhiguo
    Chen, Hu
    SENSORS, 2024, 24 (22)
  • [38] MFENet: Multitype fusion and enhancement network for detecting salient objects in RGB-T images
    Wu J.
    Zhou W.
    Qian X.
    Lei J.
    Yu L.
    Luo T.
    Digital Signal Processing: A Review Journal, 2023, 133
  • [39] MSEDNet: Multi-scale fusion and edge-supervised network for RGB-T salient object detection
    Peng, Daogang
    Zhou, Weiyi
    Pan, Junzhen
    Wang, Danhao
    NEURAL NETWORKS, 2024, 171 : 410 - 422
  • [40] Discriminative feature fusion for RGB-D salient object detection
    Chen, Zeyu
    Zhu, Mingyu
    Chen, Shuhan
    Lu, Lu
    Tang, Haonan
    Hu, Xuelong
    Ji, Chunfan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106