FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
  • [11] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [12] Unidirectional RGB-T salient object detection with intertwined driving of encoding and fusion
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Yan, Yunhui
    Han, Yahong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [13] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [14] TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection
    Guo, Qinling
    Zhou, Wujie
    Lei, Jingsheng
    Yu, Lu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1655 - 1659
  • [15] Enabling modality interactions for RGB-T salient object detection
    Zhang, Qiang
    Xi, Ruida
    Xiao, Tonglin
    Huang, Nianchang
    Luo, Yongjiang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222
  • [16] Scribble-Supervised RGB-T Salient Object Detection
    Liu, Zhengyi
    Huang, Xiaoshen
    Zhang, Guanghui
    Fang, Xianyong
    Wang, Linbo
    Tang, Bin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2369 - 2374
  • [17] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [18] Feature differences reduction and specific features preserving network for RGB-T salient object detection
    Xu, Qiqi
    Di, Zhenguang
    Dong, Haoyu
    Yang, Gang
    IMAGE AND VISION COMPUTING, 2024, 152
  • [19] EAF-Net: an enhancement and aggregation–feedback network for RGB-T salient object detection
    Haiyang He
    Jing Wang
    Xiaolin Li
    Minglin Hong
    Shiguo Huang
    Tao Zhou
    Machine Vision and Applications, 2022, 33
  • [20] PSNet: Parallel symmetric network for RGB-T salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhang, Jiayuan
    Zhang, Cong
    Xiang, Tian-Zhu
    Wang, Xiufang
    NEUROCOMPUTING, 2022, 511 (410-425) : 410 - 425