FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
  • [41] Adaptive interactive network for RGB-T salient object detection with double mapping transformer
    Dong, Feng
    Wang, Yuxuan
    Zhu, Jinchao
    Li, Yuehua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 59169 - 59193
  • [42] Masked Visual Pre-training for RGB-D and RGB-T Salient Object Detection
    Qi, Yanyu
    Guo, Ruohao
    Li, Zhenbo
    Niu, Dantong
    Qu, Liao
    PATTERN RECOGNITION AND COMPUTER VISION, PT V, PRCV 2024, 2025, 15035 : 49 - 66
  • [43] Frequency-aware feature aggregation network with dual-task consistency for RGB-T salient object detection
    Zhou, Heng
    Tian, Chunna
    Zhang, Zhenxi
    Li, Chengyang
    Xie, Yongqiang
    Li, Zhongbo
    PATTERN RECOGNITION, 2024, 146
  • [44] GOSNet: RGB-T salient object detection network based on Global Omnidirectional Scanning
    Jiang, Bochang
    Luo, Dan
    Shang, Zihan
    Liu, Sicheng
    NEUROCOMPUTING, 2025, 630
  • [45] RGB-D Salient Object Detection via Feature Fusion and Multi-scale Enhancement
    Wu, Peiliang
    Duan, Liangliang
    Kong, Lingfu
    COMPUTER VISION, CCCV 2015, PT II, 2015, 547 : 359 - 368
  • [46] Multi-enhanced Adaptive Attention Network for RGB-T Salient Object Detection
    Hao, Hao-Zhou
    Cheng, Yao
    Ji, Yi
    Li, Ying
    Liu, Chun-Ping
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [47] Leveraging modality-specific and shared features for RGB-T salient object detection
    Wang, Shuo
    Yang, Gang
    Xu, Qiqi
    Dai, Xun
    IET COMPUTER VISION, 2024, 18 (08) : 1285 - 1299
  • [48] Asymmetric cross-modal activation network for RGB-T salient object detection
    Xu, Chang
    Li, Qingwu
    Zhou, Qingkai
    Jiang, Xiongbiao
    Yu, Dabing
    Zhou, Yaqin
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [49] DaCFN: divide-and-conquer fusion network for RGB-T object detection
    Wang, Bofan
    Zhao, Haitao
    Zhuang, Yi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (07) : 2407 - 2420
  • [50] Unsupervised RGB-T object tracking with attentional multi-modal feature fusion
    Shenglan Li
    Rui Yao
    Yong Zhou
    Hancheng Zhu
    Bing Liu
    Jiaqi Zhao
    Zhiwen Shao
    Multimedia Tools and Applications, 2023, 82 : 23595 - 23613