FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
  • [41] Multi-enhanced Adaptive Attention Network for RGB-T Salient Object Detection
    Hao, Hao-Zhou
    Cheng, Yao
    Ji, Yi
    Li, Ying
    Liu, Chun-Ping
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [42] Leveraging modality-specific and shared features for RGB-T salient object detection
    Wang, Shuo
    Yang, Gang
    Xu, Qiqi
    Dai, Xun
    [J]. IET COMPUTER VISION, 2024, : 1285 - 1299
  • [43] Asymmetric cross-modal activation network for RGB-T salient object detection
    Xu, Chang
    Li, Qingwu
    Zhou, Qingkai
    Jiang, Xiongbiao
    Yu, Dabing
    Zhou, Yaqin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [44] DaCFN: divide-and-conquer fusion network for RGB-T object detection
    Wang, Bofan
    Zhao, Haitao
    Zhuang, Yi
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (07) : 2407 - 2420
  • [45] Unsupervised RGB-T object tracking with attentional multi-modal feature fusion
    Shenglan Li
    Rui Yao
    Yong Zhou
    Hancheng Zhu
    Bing Liu
    Jiaqi Zhao
    Zhiwen Shao
    [J]. Multimedia Tools and Applications, 2023, 82 : 23595 - 23613
  • [46] Unsupervised RGB-T object tracking with attentional multi-modal feature fusion
    Li, Shenglan
    Yao, Rui
    Zhou, Yong
    Zhu, Hancheng
    Liu, Bing
    Zhao, Jiaqi
    Shao, Zhiwen
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (15) : 23595 - 23613
  • [47] RGB-T Salient Object Detection via Fusing Multi-Level CNN Features
    Zhang, Qiang
    Huang, Nianchang
    Yao, Lin
    Zhang, Dingwen
    Shan, Caifeng
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3321 - 3335
  • [48] DaCFN: divide-and-conquer fusion network for RGB-T object detection
    Bofan Wang
    Haitao Zhao
    Yi Zhuang
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 2407 - 2420
  • [49] APNet: Adversarial Learning Assistance and Perceived Importance Fusion Network for All-Day RGB-T Salient Object Detection
    Zhou, Wujie
    Zhu, Yun
    Lei, Jingsheng
    Wan, Jian
    Yu, Lu
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (04): : 957 - 968
  • [50] Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection
    Huo, Fushuo
    Zhu, Xuegui
    Zhang, Lei
    Liu, Qifeng
    Shu, Yu
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3111 - 3124