MSEDNet: Multi-scale fusion and edge-supervised network for RGB-T salient object detection

被引:11
|
作者
Peng, Daogang [1 ]
Zhou, Weiyi [1 ]
Pan, Junzhen [1 ]
Wang, Danhao [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Automat Engn, 2588 Changyang Rd, Shanghai 200090, Peoples R China
关键词
RGB-T; Salient object detection; Multi-scale fusion; Edge fusion loss; SEGMENTATION;
D O I
10.1016/j.neunet.2023.12.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-T Salient object detection (SOD) is to accurately segment salient regions in both visible light images and thermal infrared images. However, most of existing methods for SOD neglects the critical complementarity between multiple modalities images, which is beneficial to further improve the detection accuracy. Therefore, this work introduces the MSEDNet RGB-T SOD method. We utilize an encoder to extract multi-level modalities features from both visible light images and thermal infrared images, which are subsequently categorized into high, medium, and low level. Additionally, we propose three separate feature fusion modules to comprehensively extract complementary information between different modalities during the fusion process. These modules are applied to specific feature levels: the Edge Dilation Sharpening module for low-level features, the Spatial and Channel-Aware module for mid-level features, and the Cross-Residual Fusion module for high-level features. Finally, we introduce an edge fusion loss function for supervised learning, which effectively extracts edge information from different modalities and suppresses background noise. Comparative demonstrate the superiority of the proposed MSEDNet over other state-of-the-art methods. The code and results can be found at the following link: https://github.com/Zhou-wy/MSEDNet.
引用
收藏
页码:410 / 422
页数:13
相关论文
共 50 条
  • [1] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [2] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [3] Bidirectional Alternating Fusion Network for RGB-T Salient Object Detection
    Tu, Zhengzheng
    Lin, Danying
    Jiang, Bo
    Gu, Le
    Wang, Kunpeng
    Zhai, Sulan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 34 - 48
  • [4] Modal complementary fusion network for RGB-T salient object detection
    Shuai Ma
    Kechen Song
    Hongwen Dong
    Hongkun Tian
    Yunhui Yan
    Applied Intelligence, 2023, 53 : 9038 - 9055
  • [5] Scribble-Supervised RGB-T Salient Object Detection
    Liu, Zhengyi
    Huang, Xiaoshen
    Zhang, Guanghui
    Fang, Xianyong
    Wang, Linbo
    Tang, Bin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2369 - 2374
  • [6] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [7] FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION
    Sun, Fengming
    Zhang, Kang
    Yuan, Xia
    Zhao, Chunxia
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1300 - 1304
  • [8] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [9] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [10] Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection
    Gao, Wei
    Liao, Guibiao
    Ma, Siwei
    Li, Ge
    Liang, Yongsheng
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2091 - 2106