FEATURE ENHANCEMENT AND FUSION FOR RGB-T SALIENT OBJECT DETECTION

被引:1
|
作者
Sun, Fengming [1 ]
Zhang, Kang [1 ]
Yuan, Xia [1 ]
Zhao, Chunxia [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
RGB-T; Salient Object Detection; Feature Enhancement; Cross-modality Feature Fusion; REFINEMENT;
D O I
10.1109/ICIP49359.2023.10222404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-modal information fusion plays a vital role in the RGB-T salient object detection. Due to RGB and thermal images come from different domains, the modality difference will lead to the unsatisfactory effect of simple feature fusion. How to explore and integrate useful information is the key to the RGB-T saliency detection methods. In this paper, we introduce an Enhancement and Fusion Network. In detail, we propose a Self-modality Feature Enhancement Module that effectively integrate the feature representation of a single modality through global context information. And we propose a Cross-modality Feature Dynamic Fusion Module to realize the effective fusion of cross-modal features in the way of dynamic weighting. Experiments on public datasets show that the proposed method achieves satisfactory results compared with other state-of-the-art salient object detection approaches.
引用
收藏
页码:1300 / 1304
页数:5
相关论文
共 50 条
  • [1] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [2] Feature aggregation with transformer for RGB-T salient object detection
    Zhang, Ping
    Xu, Mengnan
    Zhang, Ziyan
    Gao, Pan
    Zhang, Jing
    [J]. NEUROCOMPUTING, 2023, 546
  • [3] ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection
    Zhou, Wujie
    Guo, Qinling
    Lei, Jingsheng
    Yu, Lu
    Hwang, Jenq-Neng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1224 - 1235
  • [4] RGB-T salient object detection via CNN feature and result saliency map fusion
    Xu, Chang
    Li, Qingwu
    Zhou, Mingyu
    Zhou, Qingkai
    Zhou, Yaqin
    Ma, Yunpeng
    [J]. APPLIED INTELLIGENCE, 2022, 52 (10) : 11343 - 11362
  • [5] RGB-T salient object detection via CNN feature and result saliency map fusion
    Chang Xu
    Qingwu Li
    Mingyu Zhou
    Qingkai Zhou
    Yaqin Zhou
    Yunpeng Ma
    [J]. Applied Intelligence, 2022, 52 : 11343 - 11362
  • [6] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [7] Modal complementary fusion network for RGB-T salient object detection
    Shuai Ma
    Kechen Song
    Hongwen Dong
    Hongkun Tian
    Yunhui Yan
    [J]. Applied Intelligence, 2023, 53 : 9038 - 9055
  • [8] Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection
    Zhao, Jianxun
    Wen, Xin
    He, Yu
    Yang, Xiaowei
    Song, Kechen
    [J]. Sensors, 2024, 24 (24)
  • [9] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [10] Unidirectional RGB-T salient object detection with intertwined driving of encoding and fusion
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Yan, Yunhui
    Han, Yahong
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114