COSETS FROM EQUIVARIANT W-ALGEBRAS

被引:1
|
作者
Creutzig, Thomas [1 ]
Nakatsuka, Shigenori [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
来源
REPRESENTATION THEORY | 2023年 / 27卷
基金
加拿大自然科学与工程研究理事会;
关键词
REPRESENTATIONS; DUALITY;
D O I
10.1090/ert/651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivariant W-algebra of a simple Lie algebra g is a BRST reduction of the algebra of chiral differential operators on the Lie group of g. We construct a family of vertex algebras A[g, kappa, n] as subalgebras of the equivariant W-algebra of g tensored with the integrable affine vertex algebra L-n((sic)) of the Langlands dual Lie algebra (sic) at level n is an element of Z(>0). They are conformal extensions of the tensor product of an affine vertex algebra and the principal W-algebra whose levels satisfy a specific relation. When g is of type ADE, we identify A[g, kappa, 1] with the affine vertex algebra V kappa-1(g) circle times L-1(g), giving a new and efficient proof of the coset realization of the principal W-algebras of type ADE.
引用
收藏
页码:766 / 777
页数:12
相关论文
共 50 条
  • [1] Orbifolds and Cosets of Minimal W-Algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Kawasetsu, Kazuya
    Linshaw, Andrew R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 339 - 372
  • [2] Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2
    O. Schiffmann
    E. Vasserot
    Publications mathématiques de l'IHÉS, 2013, 118 : 213 - 342
  • [3] Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2
    Schiffmann, O.
    Vasserot, E.
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (118): : 213 - 342
  • [4] W-algebras
    ORaifeartaigh, L
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 79 - 85
  • [5] W-algebras from canonical transformations
    Bandelloni, G
    Lazzarini, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 2233 - 2250
  • [6] W-ALGEBRAS FROM HEISENBERG CATEGORIES
    Cautis, Sabin
    Lauda, Aaron D.
    Licata, Anthony M.
    Sussan, Joshua
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (05) : 981 - 1017
  • [7] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [8] Deformed Virasoro algebras and w-algebras from elliptic algebras
    Sorba, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 123 (02) : 673 - 682
  • [9] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [10] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718