COSETS FROM EQUIVARIANT W-ALGEBRAS

被引:1
|
作者
Creutzig, Thomas [1 ]
Nakatsuka, Shigenori [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
来源
REPRESENTATION THEORY | 2023年 / 27卷
基金
加拿大自然科学与工程研究理事会;
关键词
REPRESENTATIONS; DUALITY;
D O I
10.1090/ert/651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivariant W-algebra of a simple Lie algebra g is a BRST reduction of the algebra of chiral differential operators on the Lie group of g. We construct a family of vertex algebras A[g, kappa, n] as subalgebras of the equivariant W-algebra of g tensored with the integrable affine vertex algebra L-n((sic)) of the Langlands dual Lie algebra (sic) at level n is an element of Z(>0). They are conformal extensions of the tensor product of an affine vertex algebra and the principal W-algebra whose levels satisfy a specific relation. When g is of type ADE, we identify A[g, kappa, 1] with the affine vertex algebra V kappa-1(g) circle times L-1(g), giving a new and efficient proof of the coset realization of the principal W-algebras of type ADE.
引用
收藏
页码:766 / 777
页数:12
相关论文
共 50 条
  • [31] Urod algebras and Translation of W-algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Feigin, Boris
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [32] Yangian realisations from finite W-algebras
    Ragoucy, E
    Sorba, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (03) : 551 - 572
  • [33] Quantum W-algebras and elliptic algebras
    Feigin, B
    Frenkel, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) : 653 - 677
  • [34] Abelian Real W-Algebras
    Li Minli
    Li Bingren Institute of Mathematics
    Acta Mathematica Sinica,English Series, 1998, (01) : 85 - 90
  • [35] ON THE CLASSIFICATION OF QUANTUM W-ALGEBRAS
    BOWCOCK, P
    WATTS, GMT
    NUCLEAR PHYSICS B, 1992, 379 (1-2) : 63 - 95
  • [36] Lectures on Classical W-Algebras
    L. A. Dickey
    Acta Applicandae Mathematica, 1997, 47 : 243 - 321
  • [37] A NOTE ON SUPER W-ALGEBRAS
    BILAL, A
    PHYSICS LETTERS B, 1990, 238 (2-4) : 239 - 241
  • [38] Modular finite W-algebras
    Goodwin, Simon M.
    Topley, Lewis W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5811 - 5853
  • [39] The ABCDEFG of instantons and W-algebras
    Keller, Christoph A.
    Mekareeya, Noppadol
    Song, Jaewon
    Tachikawa, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [40] W-Algebras and nonlinear equations
    Van Moerbeke, P
    ASTERISQUE, 1998, (252) : 105 - 129