COSETS FROM EQUIVARIANT W-ALGEBRAS

被引:1
|
作者
Creutzig, Thomas [1 ]
Nakatsuka, Shigenori [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
来源
REPRESENTATION THEORY | 2023年 / 27卷
基金
加拿大自然科学与工程研究理事会;
关键词
REPRESENTATIONS; DUALITY;
D O I
10.1090/ert/651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivariant W-algebra of a simple Lie algebra g is a BRST reduction of the algebra of chiral differential operators on the Lie group of g. We construct a family of vertex algebras A[g, kappa, n] as subalgebras of the equivariant W-algebra of g tensored with the integrable affine vertex algebra L-n((sic)) of the Langlands dual Lie algebra (sic) at level n is an element of Z(>0). They are conformal extensions of the tensor product of an affine vertex algebra and the principal W-algebra whose levels satisfy a specific relation. When g is of type ADE, we identify A[g, kappa, 1] with the affine vertex algebra V kappa-1(g) circle times L-1(g), giving a new and efficient proof of the coset realization of the principal W-algebras of type ADE.
引用
收藏
页码:766 / 777
页数:12
相关论文
共 50 条
  • [41] Finite W-algebras for glN
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    ADVANCES IN MATHEMATICS, 2018, 327 : 173 - 224
  • [42] Screening operators for W-algebras
    Genra, Naoki
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03): : 2157 - 2202
  • [43] SEMIINFINITE COHOMOLOGY OF W-ALGEBRAS
    BOUWKNEGT, P
    MCCARTHY, J
    PILCH, K
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) : 91 - 102
  • [44] ON THE CENTRAL CHARGE FOR THE W-ALGEBRAS
    HORNFECK, K
    PHYSICS LETTERS B, 1991, 255 (03) : 337 - 342
  • [45] Classical W-algebras for Centralizers
    Molev, A., I
    Ragoucy, E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 691 - 703
  • [46] Lectures on classical W-algebras
    Dickey, LA
    ACTA APPLICANDAE MATHEMATICAE, 1997, 47 (03) : 243 - 321
  • [47] W-algebras at the critical level
    Arakawa, Tomoyuki
    ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2012, 565 : 1 - 13
  • [48] Subregular W-algebras of type A
    Fehily, Zachary
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [49] The ABCDEFG of instantons and W-algebras
    Christoph A. Keller
    Noppadol Mekareeya
    Jaewon Song
    Yuji Tachikawa
    Journal of High Energy Physics, 2012
  • [50] Localization for affine W-algebras
    Dhillon, Gurbir
    Raskin, Sam
    ADVANCES IN MATHEMATICS, 2023, 413