COSETS FROM EQUIVARIANT W-ALGEBRAS

被引:1
|
作者
Creutzig, Thomas [1 ]
Nakatsuka, Shigenori [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
来源
REPRESENTATION THEORY | 2023年 / 27卷
基金
加拿大自然科学与工程研究理事会;
关键词
REPRESENTATIONS; DUALITY;
D O I
10.1090/ert/651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The equivariant W-algebra of a simple Lie algebra g is a BRST reduction of the algebra of chiral differential operators on the Lie group of g. We construct a family of vertex algebras A[g, kappa, n] as subalgebras of the equivariant W-algebra of g tensored with the integrable affine vertex algebra L-n((sic)) of the Langlands dual Lie algebra (sic) at level n is an element of Z(>0). They are conformal extensions of the tensor product of an affine vertex algebra and the principal W-algebra whose levels satisfy a specific relation. When g is of type ADE, we identify A[g, kappa, 1] with the affine vertex algebra V kappa-1(g) circle times L-1(g), giving a new and efficient proof of the coset realization of the principal W-algebras of type ADE.
引用
收藏
页码:766 / 777
页数:12
相关论文
共 50 条
  • [21] Quiver W-algebras
    Kimura, Taro
    Pestun, Vasily
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1351 - 1381
  • [22] Webs of W-algebras
    Prochazka, Tomas
    Rapcak, Miroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [23] DUALITY IN W-ALGEBRAS
    FEIGIN, B
    FRENKEL, E
    DUKE MATHEMATICAL JOURNAL, 1991, 64 (02) : 75 - 82
  • [24] ON THE CLASSIFICATION OF W-ALGEBRAS
    VERSTEGEN, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (10): : 1413 - 1448
  • [25] Supersymmetric W-algebras
    Alexander Molev
    Eric Ragoucy
    Uhi Rinn Suh
    Letters in Mathematical Physics, 2021, 111
  • [26] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [27] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    Losev, I.
    Tsymbaliuk, A.
    TRANSFORMATION GROUPS, 2014, 19 (02) : 495 - 526
  • [28] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    I. LOSEV
    A. TSYMBALIUK
    Transformation Groups, 2014, 19 : 495 - 526
  • [29] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195
  • [30] W-algebras related to parafermion algebras
    Dong, Chongying
    Lam, Ching Hung
    Yamada, Hiromichi
    JOURNAL OF ALGEBRA, 2009, 322 (07) : 2366 - 2403