FINITE W-ALGEBRAS

被引:19
|
作者
TJIN, T
机构
[1] Instituut voor Theoretische Fysica, NL-1018 XE Amsterdam
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(92)90608-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Finite versions of W-algebras are introduced by considering (symplectic) reductions of finite dimensional simple Lie algebras. It is shown that a nonlinear su(2) algebra previously introduced by Rocek [Phys. Lett. B 255 (1991 ) 5541 is nothing but a finite analogue of W3(2) and therefore a reduction of sl3. Its unitary and non-unitary, reducible and irreducible highest weight representations are constructed.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [1] Modular finite W-algebras
    Goodwin, Simon M.
    Topley, Lewis W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5811 - 5853
  • [2] Finite W-algebras for glN
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    ADVANCES IN MATHEMATICS, 2018, 327 : 173 - 224
  • [3] TRACES ON FINITE W-ALGEBRAS
    Etingof, Pavel
    Schedler, Travis
    TRANSFORMATION GROUPS, 2010, 15 (04) : 843 - 850
  • [4] Introduction to finite W-algebras
    Artamonov, D. V.
    BOLETIN DE MATEMATICAS, 2016, 23 (02): : 165 - 219
  • [5] TRANSLATION FOR FINITE W-ALGEBRAS
    Goodwin, Simon M.
    REPRESENTATION THEORY, 2011, 15 : 307 - 346
  • [6] ON TOPOLOGIES OF FINITE W-ALGEBRAS
    SAKAI, S
    ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (02) : 236 - &
  • [7] Yangians and finite W-algebras
    Ragoucy, E
    Sorba, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1483 - 1487
  • [8] Rationality, quasirationality and finite W-algebras
    Gaberdiel, MR
    Neitzke, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) : 305 - 331
  • [9] RTT presentation of finite W-algebras
    Briot, C
    Ragoucy, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36): : 7287 - 7310
  • [10] FINITE W-ALGEBRAS AND INTERMEDIATE STATISTICS
    BARBARIN, F
    RAGOUCY, E
    SORBA, P
    NUCLEAR PHYSICS B, 1995, 442 (1-2) : 425 - 443