Q-Kostka polynomials and spin Green polynomials

被引:0
|
作者
Jiang, Anguo [1 ]
Jing, Naihuan [2 ,3 ]
Liu, Ning [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 01期
关键词
Kostka polynomials; Hall-Littlewood polynomials; Schur's Q-polynomials; Projective characters; VERTEX OPERATORS; SHIFTED TABLEAUX; REPRESENTATIONS;
D O I
10.1007/s00605-023-01843-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Q-Kostka polynomials L-lambda mu(t) by the vertex operator realization of the QHall-Littlewood functions G(lambda)( x; t) and derive new formulae for L-lambda mu(t). In particular, we have established stability property for the Q-Kostka polynomials. We also introduce spin Green polynomials Y-mu(lambda)(t) as both an analogue of the Green polynomials and deformation of the spin irreducible characters of delta(n). Iterative formulas of the spin Green polynomials are given and some favorable properties parallel to the Green polynomials are obtained. Tables of Y-mu(lambda)(t) are included for n <= 7.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [1] Q-Kostka polynomials and spin Green polynomials
    Anguo Jiang
    Naihuan Jing
    Ning Liu
    Monatshefte für Mathematik, 2023, 201 : 109 - 125
  • [2] A combinatorial proof of a recursion for the q-Kostka polynomials
    Killpatrick, K
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) : 29 - 53
  • [3] Nilpotent orbit varieties and the atomic decomposition of the Q-Kostka polynomials
    Brockman, W
    Haiman, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 525 - 537
  • [4] ON CERTAIN GRADED SN-MODULES AND THE Q-KOSTKA POLYNOMIALS
    GARSIA, AM
    PROCESI, C
    ADVANCES IN MATHEMATICS, 1992, 94 (01) : 82 - 138
  • [5] Spin Kostka polynomials
    Wan, Jinkui
    Wang, Weiqiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (01) : 117 - 138
  • [6] Spin Kostka polynomials
    Jinkui Wan
    Weiqiang Wang
    Journal of Algebraic Combinatorics, 2013, 37 : 117 - 138
  • [7] STATISTICS FOR SPECIAL Q,T-KOSTKA POLYNOMIALS
    FISHEL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) : 2961 - 2969
  • [8] Hall polynomials, inverse Kostka polynomials and puzzles
    Wheeler, M.
    Zinn-Justin, P.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 159 : 107 - 163
  • [9] GROWTH OF THE KOSTKA POLYNOMIALS
    HAN, GN
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (06): : 269 - 272
  • [10] Ubiquity of Kostka polynomials
    Kirillov, AN
    PHYSICS AND COMBINATORICS 1999, 2001, : 85 - 200