Q-Kostka polynomials and spin Green polynomials

被引:0
|
作者
Jiang, Anguo [1 ]
Jing, Naihuan [2 ,3 ]
Liu, Ning [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 01期
关键词
Kostka polynomials; Hall-Littlewood polynomials; Schur's Q-polynomials; Projective characters; VERTEX OPERATORS; SHIFTED TABLEAUX; REPRESENTATIONS;
D O I
10.1007/s00605-023-01843-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Q-Kostka polynomials L-lambda mu(t) by the vertex operator realization of the QHall-Littlewood functions G(lambda)( x; t) and derive new formulae for L-lambda mu(t). In particular, we have established stability property for the Q-Kostka polynomials. We also introduce spin Green polynomials Y-mu(lambda)(t) as both an analogue of the Green polynomials and deformation of the spin irreducible characters of delta(n). Iterative formulas of the spin Green polynomials are given and some favorable properties parallel to the Green polynomials are obtained. Tables of Y-mu(lambda)(t) are included for n <= 7.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条