Q-Kostka polynomials and spin Green polynomials

被引:0
|
作者
Jiang, Anguo [1 ]
Jing, Naihuan [2 ,3 ]
Liu, Ning [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 01期
关键词
Kostka polynomials; Hall-Littlewood polynomials; Schur's Q-polynomials; Projective characters; VERTEX OPERATORS; SHIFTED TABLEAUX; REPRESENTATIONS;
D O I
10.1007/s00605-023-01843-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Q-Kostka polynomials L-lambda mu(t) by the vertex operator realization of the QHall-Littlewood functions G(lambda)( x; t) and derive new formulae for L-lambda mu(t). In particular, we have established stability property for the Q-Kostka polynomials. We also introduce spin Green polynomials Y-mu(lambda)(t) as both an analogue of the Green polynomials and deformation of the spin irreducible characters of delta(n). Iterative formulas of the spin Green polynomials are given and some favorable properties parallel to the Green polynomials are obtained. Tables of Y-mu(lambda)(t) are included for n <= 7.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [41] Fusion products, cohomology of GLN flag manifolds, and Kostka polynomials
    Kedem, R
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (25) : 1273 - 1298
  • [42] Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials
    Anne Schilling
    S. Ole Warnaar
    Communications in Mathematical Physics, 1999, 202 : 359 - 401
  • [43] Hall-Littlewood vertex operators and generalized Kostka polynomials
    Shimozono, M
    Zabrocki, M
    ADVANCES IN MATHEMATICS, 2001, 158 (01) : 66 - 85
  • [44] Geometric Invariant Theory and Stretched Kostka Quasi-Polynomials
    Besson, Marc
    Jeralds, Sam
    Kiers, Joshua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (05)
  • [45] Spin q-Whittaker Polynomials and Deformed Quantum Toda
    Mucciconi, Matteo
    Petrov, Leonid
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (03) : 1331 - 1416
  • [46] Spin q-Whittaker Polynomials and Deformed Quantum Toda
    Matteo Mucciconi
    Leonid Petrov
    Communications in Mathematical Physics, 2022, 389 : 1331 - 1416
  • [47] The (p,q)-sine and (p,q)-cosine polynomials and their associated(p,q)-polynomials
    Husain, Saddam
    Khan, Nabiullah
    Usman, Talha
    Choi, Junesang
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 47 - 65
  • [48] Hilbert series of invariants, constant terms and Kostka-Foulkes polynomials
    Garsia, A.
    Wallach, N.
    Xin, G.
    Zabrocki, M.
    DISCRETE MATHEMATICS, 2009, 309 (16) : 5206 - 5230
  • [49] Q-hermite polynomials and classical orthogonal polynomials
    Berg, C
    Ismail, MEH
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01): : 43 - 63
  • [50] ON Q-POLYNOMIALS
    SHRIVAST.PN
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1968, 38 : 203 - &