A combinatorial proof of a recursion for the q-Kostka polynomials

被引:4
|
作者
Killpatrick, K [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1006/jcta.1999.3041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kostka numbers K-lambda mu play an important role in symmetric function theory, representation theory, combinatorics and invariant theory. The q-Kostka polynomials K-lambda mu(q) are the q-analogues of the Kostka numbers and generalize and extend the mathematical meaning of the Kostka numbers. Lascoux and Schutzenberger proved one can attach a non-negative integer statistic called charge to a semistandard tableau of shape lambda. and content mu such that the Kostka polynomial K-lambda mu,(q) is the generating function for charge on those semistandard tableaux. We will give two new descriptions of charge and prove several new properties of this statistic. These new descriptions of charge will be used to give a combinatorial proof of a content reducing recursion for the q-Kostka polynomials originally proved by A. M. Garsia and C. Procesi ( 1992, Adv. in Math. 94, 82-138). (C) 2000 Academic Press.
引用
收藏
页码:29 / 53
页数:25
相关论文
共 50 条
  • [1] Q-Kostka polynomials and spin Green polynomials
    Anguo Jiang
    Naihuan Jing
    Ning Liu
    Monatshefte für Mathematik, 2023, 201 : 109 - 125
  • [2] Q-Kostka polynomials and spin Green polynomials
    Jiang, Anguo
    Jing, Naihuan
    Liu, Ning
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 109 - 125
  • [3] Nilpotent orbit varieties and the atomic decomposition of the Q-Kostka polynomials
    Brockman, W
    Haiman, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 525 - 537
  • [4] ON CERTAIN GRADED SN-MODULES AND THE Q-KOSTKA POLYNOMIALS
    GARSIA, AM
    PROCESI, C
    ADVANCES IN MATHEMATICS, 1992, 94 (01) : 82 - 138
  • [5] A recursion and a combinatorial formula for Jack polynomials
    Friedrich Knop
    Siddhartha Sahi
    Inventiones mathematicae, 1997, 128 : 9 - 22
  • [6] A recursion and a combinatorial formula for Jack polynomials
    Knop, F
    Sahi, S
    INVENTIONES MATHEMATICAE, 1997, 128 (01) : 9 - 22
  • [7] STATISTICS FOR SPECIAL Q,T-KOSTKA POLYNOMIALS
    FISHEL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) : 2961 - 2969
  • [8] A short proof of the integrality of the Macdonald (q,t)-Kostka coefficients
    Lapointe, L
    Vinet, L
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) : 205 - 214
  • [9] Spin Kostka polynomials
    Wan, Jinkui
    Wang, Weiqiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (01) : 117 - 138
  • [10] A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows
    Dolega, Maciej
    Gerber, Thomas
    Torres, Jacinta
    JOURNAL OF ALGEBRA, 2020, 560 : 1253 - 1296