A combinatorial proof of a recursion for the q-Kostka polynomials

被引:4
|
作者
Killpatrick, K [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
D O I
10.1006/jcta.1999.3041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kostka numbers K-lambda mu play an important role in symmetric function theory, representation theory, combinatorics and invariant theory. The q-Kostka polynomials K-lambda mu(q) are the q-analogues of the Kostka numbers and generalize and extend the mathematical meaning of the Kostka numbers. Lascoux and Schutzenberger proved one can attach a non-negative integer statistic called charge to a semistandard tableau of shape lambda. and content mu such that the Kostka polynomial K-lambda mu,(q) is the generating function for charge on those semistandard tableaux. We will give two new descriptions of charge and prove several new properties of this statistic. These new descriptions of charge will be used to give a combinatorial proof of a content reducing recursion for the q-Kostka polynomials originally proved by A. M. Garsia and C. Procesi ( 1992, Adv. in Math. 94, 82-138). (C) 2000 Academic Press.
引用
收藏
页码:29 / 53
页数:25
相关论文
共 50 条