ON CERTAIN GRADED SN-MODULES AND THE Q-KOSTKA POLYNOMIALS

被引:116
|
作者
GARSIA, AM
PROCESI, C
机构
[1] Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0119
基金
美国国家科学基金会;
关键词
D O I
10.1016/0001-8708(92)90034-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive here a number of properties of the q-Kostka polynomials Kλ,μ(q). In particular we obtain a very accessible proof that these polynomials have non-negative integer coefficients. Other monotonicity properties are also derived. These results are obtained by studying certain graded Sn-modules Rμ which afford a character that may be expressed in terms of the Kλ,μ(q). Certain nesting properties of the Rμ which correspond to the dominance order of partitions then translate themselves into combinatorial inequalities involving the Kλ,μ(q). The modules Rμ have been given an elementary presentation by DeConcini and Procesi (Invent. Math. 64 (1981), 203-219), as rather simple quotients of the polynomial ring Q[x1, x2, ...,xn]. We show here that their basic properties may also be derived in an entirely elementary manner. © 1992.
引用
收藏
页码:82 / 138
页数:57
相关论文
共 50 条
  • [1] Q-Kostka polynomials and spin Green polynomials
    Anguo Jiang
    Naihuan Jing
    Ning Liu
    Monatshefte für Mathematik, 2023, 201 : 109 - 125
  • [2] Q-Kostka polynomials and spin Green polynomials
    Jiang, Anguo
    Jing, Naihuan
    Liu, Ning
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 109 - 125
  • [3] A combinatorial proof of a recursion for the q-Kostka polynomials
    Killpatrick, K
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) : 29 - 53
  • [4] Nilpotent orbit varieties and the atomic decomposition of the Q-Kostka polynomials
    Brockman, W
    Haiman, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 525 - 537
  • [5] COMBINATORIAL SN-MODULES AS CODES
    LIEBLER, RA
    ZIMMERMANN, KH
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (01) : 47 - 68
  • [6] Combinatorial Sn-modules as codes
    Liebler, Robert A.
    Zimmermann, Karl-Heinz
    1600, Kluwer Academic Publishers, Dordrecht, Netherlands (04):
  • [7] On the Sn-modules generated by partitions of a given shape
    Kane, Daniel
    Sivek, Steven
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [8] MULTIPLICITIES OF SN-MODULES AND THE INDEX AND THE CHARGE OF TABLEAUX
    DONIN, IF
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (04) : 280 - 282
  • [9] A Combinatorial Formula for the Hilbert Series of bigraded Sn-modules
    Yoo, Meesue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [10] STATISTICS FOR SPECIAL Q,T-KOSTKA POLYNOMIALS
    FISHEL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) : 2961 - 2969