Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion
    Mahbod, Amirreza
    Ellinger, Isabella
    Ecker, Rupert
    Smedby, Orjan
    Wang, Chunliang
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 754 - 762
  • [22] A visual analytics approach to diagnosis of breast DCE-MRI data
    Glasser, Sylvia
    Preim, Uta
    Toennies, Klaus
    Preim, Bernhard
    COMPUTERS & GRAPHICS-UK, 2010, 34 (05): : 602 - 611
  • [23] Can DWI-MRI be an alternative to DCE-MRI in the diagnosis of troublesome breast lesions?
    Lamiaa Mohamed Bassam Hashem
    Sherihan W. Y. Gareer
    Aya Mohamed Bassam Hashem
    Sherihan Fakhry
    Yasmin Mounir Tohamey
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [24] Can DWI-MRI be an alternative to DCE-MRI in the diagnosis of troublesome breast lesions?
    Hashem, Lamiaa Mohamed Bassam
    Gareer, Sherihan W. Y.
    Hashem, Aya Mohamed Bassam
    Fakhry, Sherihan
    Tohamey, Yasmin Mounir
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [25] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [26] LBP-TOP for Volume Lesion Classification in Breast DCE-MRI
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 647 - 657
  • [27] Case-Based Repeatability of AI Classification On Multi-Modality Imaging of Breast Lesions Using DCE-MRI and FFDM
    Whitney, H.
    Drukker, K.
    Edwards, A.
    Lan, L.
    Abe, H.
    Giger, M.
    MEDICAL PHYSICS, 2022, 49 (06) : E296 - E296
  • [28] A Multiresolution Analysis Framework For Breast Tumor Classification Based On DCE-MRI
    Tzalavra, Alexia G.
    Zacharaki, Evangelia I.
    Tsiaparas, Nikolaos N.
    Constantinidis, Fotios
    Nikita, Konstantina S.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST), 2014, : 246 - 250
  • [29] Comparison of diagnostic performances, case-based repeatability, and operating sensitivity and specificity in classification of breast lesions using DCE-MRI
    de Oliveira, Michelle
    Drukker, Karen
    Vieceli, Michael
    Abe, Hiroyuki
    Giger, Maryellen L.
    Whitney, Heather M.
    MEDICAL IMAGING 2021: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2021, 11599
  • [30] Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Granata, Vincenza
    Catalano, Orlando
    Amato, Daniela Maria
    Di Bonito, Maurizio
    D'Aiuto, Massimiliano
    Capasso, Immacolata
    Rinaldo, Massimo
    Petrillo, Antonella
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015