LBP-TOP for Volume Lesion Classification in Breast DCE-MRI

被引:9
|
作者
Piantadosi, Gabriele [1 ]
Fusco, Roberta [2 ]
Petrillo, Antonella [2 ]
Sansone, Mario [1 ]
Sansone, Carlo [1 ]
机构
[1] Univ Naples Federico II, DIETI, Naples, Italy
[2] Pascale Fdn, Natl Canc Inst Naples, Dept Diagnost Imaging, Naples, Italy
关键词
LBP-TOP; DCE-MRI; Lesion classification; Dynamic features; 4D Volume; Random forest; MODEL-FREE VISUALIZATION; LOCAL BINARY PATTERNS; DIAGNOSIS; CANCER;
D O I
10.1007/978-3-319-23231-7_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is a complementary diagnostic method for early detection of breast cancer. However, due to the large amount of information, DCE-MRI data can hardly be inspected without the use of a Computer Aided Diagnosis (CAD) system. Among the major issues in developing CAD for breast DCE-MRI there is the classification of segmented regions of interest according to their aggressiveness. While there is a certain amount of evidence that dynamic information can be suitably used for lesion classification, it still remains unclear whether other kinds of features (e.g. texture-based) can add useful information. This pushes the exploration of new features coming from different research fields such as Local Binary Pattern (LBP) and its variants. In particular, in this work we propose to use LBP-TOP (Three Orthogonal Projections) for the assessment of lesion malignancy in breast DCE-MRI. Different classifiers as well as the influence of a motion correction technique have been considered. Our results indicate an improvement by using LPB-TOP in combination with a Random Forest classifier (84.6% accuracy) with respect to previous findings in literature.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [1] Automatic Lesion Detection in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 359 - 368
  • [2] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [3] Tumor classification using perfusion volume fractions in breast DCE-MRI
    Lee, Sang Ho
    Kim, Jong Hyo
    Park, Jeong Seon
    Park, Sang Joon
    Jung, Yun Sub
    Song, Jung Joo
    Moon, Woo Kyung
    [J]. MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
  • [4] Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Granata, Vincenza
    Catalano, Orlando
    Amato, Daniela Maria
    Di Bonito, Maurizio
    D'Aiuto, Massimiliano
    Capasso, Immacolata
    Rinaldo, Massimo
    Petrillo, Antonella
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [5] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [6] Image manifold revealing for breast lesion segmentation in DCE-MRI
    Hu, Liang
    Cheng, Zhaoning
    Wang, Manning
    Song, Zhijian
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1353 - S1360
  • [7] Novel Morphological Features for Non-mass-like Breast Lesion Classification on DCE-MRI
    Razavi, Mohammad
    Wang, Lei
    Tan, Tao
    Karssemeijer, Nico
    Linsen, Lars
    Frese, Udo
    Hahn, Horst K.
    Zachmann, Gabriel
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 305 - 312
  • [8] A Physiological-Informed Generative Model for Improving Breast Lesion Classification in Small DCE-MRI Datasets
    Gravina, Michela
    Maddaluno, Massimo
    Marrone, Stefano
    Sansone, Mario
    Fusco, Roberta
    Granata, Vincenza
    Petrillo, Antonella
    Sansone, Carlo
    [J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (11) : 6764 - 6777
  • [9] Performance of a Fully Automatic Lesion Detection System for Breast DCE-MRI
    Vignati, Anna
    Giannini, Valentina
    De Luca, Massimo
    Morra, Lia
    Persano, Diego
    Carbonaro, Luca A.
    Bertotto, Ilaria
    Martincich, Laura
    Regge, Daniele
    Bert, Alberto
    Sardanelli, Francesco
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (06) : 1341 - 1351
  • [10] Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system
    Fusco R.
    Di Marzo M.
    Sansone C.
    Sansone M.
    Petrillo A.
    [J]. European Radiology Experimental, 1 (1)