Novel Morphological Features for Non-mass-like Breast Lesion Classification on DCE-MRI

被引:2
|
作者
Razavi, Mohammad [1 ]
Wang, Lei [1 ,5 ]
Tan, Tao [2 ]
Karssemeijer, Nico [2 ]
Linsen, Lars [3 ]
Frese, Udo [4 ]
Hahn, Horst K. [1 ]
Zachmann, Gabriel [4 ]
机构
[1] Fraunhofer MEVIS, Inst Med Image Comp, Bremen, Germany
[2] Radboud Univ Nijmegen, Med Ctr, Nijmegen, Netherlands
[3] Jacobs Univ Bremen, Bremen, Germany
[4] Univ Bremen, Bremen, Germany
[5] Surpath Med GmbH, Wurzburg, Germany
关键词
ENHANCEMENT; DIAGNOSIS; NONMASS;
D O I
10.1007/978-3-319-47157-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For both visual analysis and computer assisted diagnosis systems in breast MRI reading, the delineation and diagnosis of ductal carcinoma in situ ( DCIS) is among the most challenging tasks. Recent studies show that kinetic features derived from dynamic contrast enhanced MRI (DCE-MRI) are less effective in discriminating malignant non-masses against benign ones due to their similar kinetic characteristics. Adding shape descriptors can improve the differentiation accuracy. In this work, we propose a set of novel morphological features using the sphere packing technique, aiming to discriminate non-masses based on their shapes. The feature extraction, selection and the classification modules are integrated into a computer-aided diagnosis ( CAD) system. The evaluation was performed on a data set of 106 non-masses extracted from 86 patients, which achieved an accuracy of 90.56 %, precision of 90.3%, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.94 for the differentiation of benign and malignant types.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
  • [1] Diagnostic performance of DCE-MRI, multiparametric MRI and multimodality imaging for discrimination of breast non-mass-like enhancement lesions
    Zang, Hui
    Liu, Hong-li
    Zhu, Li-yu
    Wang, Xiao
    Wei, Liang-min
    Lou, Jian-juan
    Zou, Qi-gui
    Wang, Si-qi
    Wang, Shou-ju
    Jiang, Yan-ni
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1136):
  • [2] Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system
    Fusco R.
    Di Marzo M.
    Sansone C.
    Sansone M.
    Petrillo A.
    [J]. European Radiology Experimental, 1 (1)
  • [3] A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI
    Fusco, Roberta
    Sansone, Mario
    Petrillo, Antonella
    Sansone, Carlo
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 684 - 692
  • [4] LBP-TOP for Volume Lesion Classification in Breast DCE-MRI
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 647 - 657
  • [5] Comparison of Diagnostic Efficacy Between Contrast-Enhanced Ultrasound and DCE-MRI for Mass- and Non-Mass-Like Enhancement Types in Breast Lesions
    Liu, Wei
    Zong, Min
    Gong, Hai-yan
    Ling, Li-jun
    Ye, Xin-hua
    Wang, Shui
    Li, Cui-ying
    [J]. CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 13567 - 13578
  • [6] Automatic Lesion Detection in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 359 - 368
  • [7] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [8] Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Granata, Vincenza
    Catalano, Orlando
    Amato, Daniela Maria
    Di Bonito, Maurizio
    D'Aiuto, Massimiliano
    Capasso, Immacolata
    Rinaldo, Massimo
    Petrillo, Antonella
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [9] Breast Lesion Characterization Using Kinetic Features Measured On Ultrafast DCE-MRI
    Pineda, F.
    Ren, Z.
    Kulkarni, K.
    Abe, H.
    Karczmar, G.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E145 - E145
  • [10] Classification of Breast Carcinoma Subtypes Using Computer-Extracted Morphological and Kinetic Features in DCE-MRI
    Bhooshan, N.
    Giger, M.
    Chen, W.
    Jansen, S.
    Li, H.
    Lan, L.
    Newstead, G.
    [J]. MEDICAL PHYSICS, 2008, 35 (06)