A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI

被引:0
|
作者
Fusco, Roberta [1 ]
Sansone, Mario [1 ]
Petrillo, Antonella [2 ]
Sansone, Carlo [3 ]
机构
[1] Univ Naples Federico II, Dept Biomed Elect & Telecommun Engn, Naples, Italy
[2] Natl Canc Inst Naples, Fondazione Pascale, Dept Diagnost Imaging, I-80131 Naples, Italy
[3] Univ Naples Federico II, Dept Comp & Syst Engn, Naples, Italy
关键词
breast DCE-MRI; multiple classification system; morphological and dynamic features; IMAGES; DIAGNOSIS; CRITERIA; CANCER; BENIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a Multiple Classifier System (MCS) for classifying breast lesions in Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The proposed MCS combines the results of two classifiers trained with dynamic and morphological features respectively. Twenty-one malignant and seventeen benign breast lesions, histologically proven, were analyzed. Volumes of Interest (VOIs) have been automatically extracted via a segmentation procedure assessed in a previous study. The performance of the MCS have been compared with histological classification. Results indicated that with automatic segmented VOIs 90% of test-set lesions were correctly classified.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [1] Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system
    Fusco R.
    Di Marzo M.
    Sansone C.
    Sansone M.
    Petrillo A.
    [J]. European Radiology Experimental, 1 (1)
  • [2] DCE-MRI interpolation using learned transformations for breast lesions classification
    Hongyu Wang
    Cong Gao
    Jun Feng
    Xiaoying Pan
    Di Yang
    Baoying Chen
    [J]. Multimedia Tools and Applications, 2021, 80 : 26237 - 26254
  • [3] DCE-MRI interpolation using learned transformations for breast lesions classification
    Wang, Hongyu
    Gao, Cong
    Feng, Jun
    Pan, Xiaoying
    Yang, Di
    Chen, Baoying
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26237 - 26254
  • [4] Classification of Breast Carcinoma Subtypes Using Computer-Extracted Morphological and Kinetic Features in DCE-MRI
    Bhooshan, N.
    Giger, M.
    Chen, W.
    Jansen, S.
    Li, H.
    Lan, L.
    Newstead, G.
    [J]. MEDICAL PHYSICS, 2008, 35 (06)
  • [5] Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI
    Li, Zixian
    Zhong, Yuming
    Wang, Yi
    [J]. 2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 496 - 501
  • [6] Molecular subtypes classification of breast cancer in DCE-MRI using deep features
    Hasan, Ali M.
    Al-Waely, Noor K. N.
    Aljobouri, Hadeel K.
    Jalab, Hamid A.
    Ibrahim, Rabha W.
    Meziane, Farid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [7] Novel Morphological Features for Non-mass-like Breast Lesion Classification on DCE-MRI
    Razavi, Mohammad
    Wang, Lei
    Tan, Tao
    Karssemeijer, Nico
    Linsen, Lars
    Frese, Udo
    Hahn, Horst K.
    Zachmann, Gabriel
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 305 - 312
  • [8] Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
    Wang, Long
    Zhang, Ming
    He, Guangyuan
    Shen, Dong
    Meng, Mingzhu
    [J]. DIAGNOSTICS, 2023, 13 (06)
  • [9] An Investigation of Deep Learning for Lesions Malignancy Classification in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 479 - 489
  • [10] Using Three-Class BANN Classifier in the Automated Analysis of Breast Cancer Lesions in DCE-MRI
    Bhooshan, Neha
    Giger, Maryellen
    Edwards, Darrin
    Drukker, Karen
    Jansen, Sanaz
    Li, Hui
    Lan, Li
    Newstead, Gillian
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260