DCE-MRI interpolation using learned transformations for breast lesions classification

被引:1
|
作者
Wang, Hongyu [1 ,2 ]
Gao, Cong [1 ,2 ]
Feng, Jun [3 ]
Pan, Xiaoying [1 ,2 ]
Yang, Di [4 ]
Chen, Baoying [5 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Shaanxi, Peoples R China
[2] Xian Univ Posts & Telecommun, Shaanxi Key Lab Network Data Anal & Intelligent P, Xian 710121, Shaanxi, Peoples R China
[3] Northwest Univ, Dept Informat Sci & Technol, Xian 7101127, Shaanxi, Peoples R China
[4] Fourth Mil Med Univ, Tangdu Hosp, Dept Radiol, Funct & Mol Imaging Key Lab Shaanxi Prov, Xian 710038, Shaanxi, Peoples R China
[5] Xian Int Med Ctr Hosp, Imaging Diag & Treatment Ctr, Xian 710110, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast lesions classification; Interpolation; Contrast transformation; Convolutional neural network; DCE-MRI; CANCER DIAGNOSIS;
D O I
10.1007/s11042-021-10919-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic differentiation of benign and malignant breast lesions on multiple DCE-MRI series is a challenging task. The performance of the Convolutional Neural Networks (CNNs) based methods is severely affected when the number of DCE-MRI series is inadequate or inconsistent. This paper is motivated by the need of capturing spatial-temporal features from consistent DCE-MRI series for most CNN-based classification methods, and aims at designing an interpolation network that can enlarge the DCE-MRI series. Therefore, our method achieves the objective of breast lesion classification for inconsistent DCE-MRI series with a two-stage method, i.e., DCE-MRI interpolation and classification. Inspired by the learning-based data augmentation, we propose a variable-length multiple DCE-MRI series interpolation method using learned transformations to enlarge DCE-MRI series. Specifically, the forward and backward contrast transformations are learned to estimate the kinetic and spatial variation between different DCE-MRI series. Then, an adaptive warping method is proposed to generate multiple interpolated DCE-MRI series. Finally, the spatial-temporal features are extracted by a new two-stream network from the interpolated DCE-MRI and they are further used to classify breast lesions. We justify the proposed method through extensive experiments using 1223 DCE-MRI slices. Comparing to other methods, it achieves better results on both single series interpolation and multiple series interpolation. The interpolated DCE-MRI greatly improves the classification accuracy nearly by 5% and the best accuracy is 81.9%.
引用
收藏
页码:26237 / 26254
页数:18
相关论文
共 50 条
  • [1] DCE-MRI interpolation using learned transformations for breast lesions classification
    Hongyu Wang
    Cong Gao
    Jun Feng
    Xiaoying Pan
    Di Yang
    Baoying Chen
    Multimedia Tools and Applications, 2021, 80 : 26237 - 26254
  • [2] High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations
    Wang, Hongyu
    Feng, Jun
    Pan, Xiaoying
    Yang, Di
    Chen, Baoying
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020, 2020, 12417 : 50 - 59
  • [3] Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
    Wang, Long
    Zhang, Ming
    He, Guangyuan
    Shen, Dong
    Meng, Mingzhu
    DIAGNOSTICS, 2023, 13 (06)
  • [4] An Investigation of Deep Learning for Lesions Malignancy Classification in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 479 - 489
  • [5] A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI
    Fusco, Roberta
    Sansone, Mario
    Petrillo, Antonella
    Sansone, Carlo
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 684 - 692
  • [6] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [7] Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI
    Chen, Weijie
    Giger, Maryellen L.
    Bick, Ulrich
    Newstead, Gillian M.
    MEDICAL PHYSICS, 2006, 33 (08) : 2878 - 2887
  • [8] Tumor classification using perfusion volume fractions in breast DCE-MRI
    Lee, Sang Ho
    Kim, Jong Hyo
    Park, Jeong Seon
    Park, Sang Joon
    Jung, Yun Sub
    Song, Jung Joo
    Moon, Woo Kyung
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
  • [9] Differentiating Suspicious Breast Lesions with Ultrafast DCE-MRI
    Pineda, F.
    Easley, T.
    Abe, H.
    Schacht, D.
    Karczmar, G.
    MEDICAL PHYSICS, 2018, 45 (06) : E192 - E192
  • [10] SEGMENTATION AND CLASSIFICATION OF TRIPLE NEGATIVE BREAST CANCERS USING DCE-MRI
    Agner, Shannon C.
    Xu, Jun
    Fatakdawala, Hussain
    Ganesan, Shridar
    Madabhushi, Anant
    Englander, Sarah
    Rosen, Mark
    Thomas, Kathleen
    Schnall, Mitehell
    Feldman, Miehael
    Tomaszewski, John
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1227 - +