High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations

被引:0
|
作者
Wang, Hongyu [1 ,2 ]
Feng, Jun [3 ]
Pan, Xiaoying [1 ,2 ]
Yang, Di [4 ]
Chen, Baoying [5 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Shaanxi, Peoples R China
[2] Xian Univ Posts & Telecommun, Shaanxi Key Lab Network Data Anal & Intelligent P, Xian 710121, Shaanxi, Peoples R China
[3] Northwest Univ, Dept Informat Sci & Technol, Xian 7101127, Shaanxi, Peoples R China
[4] Fourth Mil Med Univ, Tangdu Hosp, Dept Radiol, Funct & Mol Imaging Key Lab Shaanxi Prov, Xian 710038, Shaanxi, Peoples R China
[5] Xian Int Med Ctr Hosp, Imaging Diag & Treatment Ctr, Xian 710110, Shaanxi, Peoples R China
关键词
DCE-MRI; Interpolation; CNN; Breast cancer;
D O I
10.1007/978-3-030-59520-3_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic Contrast Enhancement Magnetic Resonance Imaging (DCE-MRI) is gaining popularity for computer aided diagnosis (CAD) of breast cancer. However, the performance of these CAD systems is severely affected when the number of DCE-MRI series is inadequate, inconsistent or limited. This work presents a High-Quality DCE-MRI Interpolation method based on Deep Neural Network (HQI-DNN) using an end-to-end trainable Convolutional Neural Network (CNN). It gives a good solution to the problem of inconsistent and inadequate quantity of DCE-MRI series for breast cancer analysis. Starting from a nested CNN for feature learning, the dynamic contrast enhanced features of breast lesions are learned by bidirectional contrast transformations between DCE-MRI series. Each transformation contains the spatial deformation field and the intensity change, enabling a variable-length multiple series interpolation of DCE-MRI. We justified the proposed method through extensive experiments on our dataset. It produced a more efficient result of breast DCE-MRI interpolation than other methods.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 50 条
  • [1] DCE-MRI interpolation using learned transformations for breast lesions classification
    Hongyu Wang
    Cong Gao
    Jun Feng
    Xiaoying Pan
    Di Yang
    Baoying Chen
    [J]. Multimedia Tools and Applications, 2021, 80 : 26237 - 26254
  • [2] DCE-MRI interpolation using learned transformations for breast lesions classification
    Wang, Hongyu
    Gao, Cong
    Feng, Jun
    Pan, Xiaoying
    Yang, Di
    Chen, Baoying
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26237 - 26254
  • [3] Quality Enhancement of Breast DCE-MRI Images Via Convolutional Autoencoders
    Campaz-Usuga, Pablo
    Fonnegra, Ruben D.
    Mera, Carlos
    [J]. 2021 IEEE 2ND INTERNATIONAL CONGRESS OF BIOMEDICAL ENGINEERING AND BIOENGINEERING (CI-IB&BI 2021), 2021,
  • [4] Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory
    Wang, Haoyu
    Miao, Yanwei
    Zhou, Kun
    Yu, Yanming
    Bao, Shanglian
    He, Qiang
    Dai, Yongming
    Xuan, Stephanie Y.
    Tarabishy, Bisher
    Ye, Yongquan
    Hu, Jiani
    [J]. MEDICAL PHYSICS, 2010, 37 (09) : 4971 - 4981
  • [5] Automatic Lesion Detection in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 359 - 368
  • [6] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [7] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [8] Selection of Suspicious ROIs in Breast DCE-MRI
    Fusco, Roberta
    Sansone, Mario
    Sansone, Carlo
    Petrillo, Antonella
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 48 - 57
  • [9] High-Quality Breast MRI
    Hendrick, R. Edward
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2014, 52 (03) : 547 - +
  • [10] Texture based segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    [J]. DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 689 - 695