Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Retinal Image Quality Classification Using Fine-Tuned CNN
    Sun, Jing
    Wan, Cheng
    Cheng, Jun
    Yu, Fengli
    Liu, Jiang
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 126 - 133
  • [32] Harmonization of radiomic features of breast lesions across international DCE-MRI datasets
    Whitney, Heather M.
    Li, Hui
    Ji, Yu
    Liu, Peifang
    Giger, Maryellen L.
    JOURNAL OF MEDICAL IMAGING, 2020, 7 (01)
  • [33] Electronic removal of lesions for more robust BPE scoring on breast DCE-MRI
    Douglas, Lindsay
    Sheth, Deepa
    Giger, Maryellen
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [34] A secure OsiriX plug-in for detecting suspicious lesions in breast DCE-MRI
    Piantadosi, Gabriele
    Marrone, Stefano
    Sansone, Mario
    Sansone, Carlo
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, 8286 LNCS (PART 2): : 217 - 224
  • [35] Histologic characterization of DCE-MRI breast tumors with dimensional data reduction
    Varini, Claudio
    Degenhard, Andreas
    Nattkemper, Tim W.
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [36] Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Carone, Guglielmo
    Amato, Daniela Maria
    Sansone, Carlo
    Petrillo, Antonella
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2016, 36 (04) : 449 - 459
  • [37] Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review
    Roberta Fusco
    Mario Sansone
    Salvatore Filice
    Guglielmo Carone
    Daniela Maria Amato
    Carlo Sansone
    Antonella Petrillo
    Journal of Medical and Biological Engineering, 2016, 36 : 449 - 459
  • [38] Selection of Suspicious ROIs in Breast DCE-MRI
    Fusco, Roberta
    Sansone, Mario
    Sansone, Carlo
    Petrillo, Antonella
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 48 - 57
  • [39] Sureness of classification of breast cancers as pure DCIS or with invasive components on DCE-MRI
    Whitney, Heather M.
    Drukker, Karen
    Giger, Maryellen L.
    17TH INTERNATIONAL WORKSHOP ON BREAST IMAGING, IWBI 2024, 2024, 13174
  • [40] Automatic Lesion Detection in Breast DCE-MRI
    Marrone, Stefano
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 359 - 368