Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet

被引:5
|
作者
Wang, Long [1 ]
Zhang, Ming [1 ]
He, Guangyuan [1 ]
Shen, Dong [1 ]
Meng, Mingzhu [1 ]
机构
[1] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp 2, Dept Radiol, Changzhou 213164, Peoples R China
关键词
mobile convolutional neural networks; deep learning; breast lesions; magnetic resonance imaging; CANCER; DIAGNOSIS; MACHINE; MODEL;
D O I
10.3390/diagnostics13061067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [42] The added value of abbreviated MRI with UF DCE-MRI and DWI on digital breast tomosynthesis in diagnosing breast lesions
    Ohashi, Akane
    Kataoka, Masako
    Honda, Maya
    Iima, Mami
    Urushibata, Yuta
    Nickel, Marcel Dominik
    Fornvik, Daniel
    Nakamoto, Yuji
    17TH INTERNATIONAL WORKSHOP ON BREAST IMAGING, IWBI 2024, 2024, 13174
  • [43] Transfer-GAN: data augmentation using a fine-tuned GAN for sperm morphology classification
    Abbasi, Amir
    Bahrami, Sepideh
    Hemmati, Tahere
    Mirroshandel, Seyed Abolghasem
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06): : 2440 - 2456
  • [44] Texture based segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 689 - 695
  • [45] Using Three-Class BANN Classifier in the Automated Analysis of Breast Cancer Lesions in DCE-MRI
    Bhooshan, Neha
    Giger, Maryellen
    Edwards, Darrin
    Drukker, Karen
    Jansen, Sanaz
    Li, Hui
    Lan, Li
    Newstead, Gillian
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [46] Automated localization of breast cancer in DCE-MRI
    Gubern-Merida, Albert
    Marti, Robert
    Melendez, Jaime
    Hauth, Jakob L.
    Mann, Ritse M.
    Karssemeijer, Nico
    Platel, Bram
    MEDICAL IMAGE ANALYSIS, 2015, 20 (01) : 265 - 274
  • [47] Motion Corruption Detection in Breast DCE-MRI
    Chiang, Sylvester
    Balasingham, Sharmila
    Richmond, Lara
    Curpen, Belinda
    Skarpathiotakis, Mia
    Martel, Anne
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 10 - 18
  • [48] Computerized breast parenchymal analysis on DCE-MRI
    Li, Hui
    Giger, Maryellen L.
    Yuan, Yading
    Jansen, Sanaz A.
    Lan, Li
    Bhooshan, Neha
    Newstead, Gillian M.
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [49] Artificial Intelligence-Based Classification of Breast Lesions Imaged With a Multiparametric Breast MRI Protocol With Ultrafast DCE-MRI, T2, and DWI
    Dalmis, Mehmet U.
    Gubern-Merida, Albert
    Vreemann, Suzan
    Bult, Peter
    Karssemeijer, Nico
    Mann, Ritse
    Teuwen, Jonas
    INVESTIGATIVE RADIOLOGY, 2019, 54 (06) : 325 - 332
  • [50] 3TP-CNN: Radiomics and Deep Learning for Lesions Classification in DCE-MRI
    Gravina, Michela
    Marrone, Stefano
    Piantadosi, Gabriele
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 661 - 671