Quantum annealing with error mitigation

被引:3
|
作者
Shingu, Yuta [1 ,2 ]
Nikuni, Tetsuro [1 ]
Kawabata, Shiro [2 ,3 ]
Matsuzaki, Yuichiro [2 ,3 ]
机构
[1] Tokyo Univ Sci, Grad Sch Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan
[2] Natl Inst Adv Ind Sci & Technol, Global Res & Dev Ctr Business Quantum AI Technol G, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[3] Natl Inst Adv Ind Sci & Technol, NEC AIST Quantum Technol Cooperat Res Lab, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1103/PhysRevA.109.042606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum annealing (QA) is one of the methods to prepare a ground state of a problem Hamiltonian. In the absence of noise, QA can accurately estimate the ground -state energy if the adiabatic condition is satisfied. However, in practice, systems are known to suffer from decoherence. Meanwhile, considerable research effort has been devoted to noisy intermediate -scale quantum (NISQ) computation. For practical NISQ computation, many error -mitigation (EM) methods have been proposed to mitigate the effects of noise. This paper proposes a QA strategy combined with an EM method, namely, dual -state purification, to suppress the effects of decoherence. Our protocol consists of four parts: the conventional dynamics, single-qubit projective measurements, the Hamiltonian dynamics corresponding to an inverse map of the first dynamics, and postprocessing of the measurement results. Importantly, our protocol works without two-qubit gates that require pulse operations; hence, it is suitable for devices designed for practical QA. In addition, we present numerical calculations to show that our protocol is more accurate than the conventional QA in estimating the ground -state energy under decoherence.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An overview of quantum error mitigation formulas
    秦大粤
    徐晓思
    李颖
    Chinese Physics B, 2022, (09) : 54 - 65
  • [22] An overview of quantum error mitigation formulas
    Qin, Dayue
    Xu, Xiaosi
    Li, Ying
    CHINESE PHYSICS B, 2022, 31 (09)
  • [23] Error mitigation in brainbox quantum autoencoders
    Pazem, Josephine
    Ansari, Mohammad H.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [24] Error correction for encoded quantum annealing
    Pastawski, Fernando
    Preskill, John
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [25] Automated quantum error mitigation based on probabilistic error reduction
    McDonough, Benjamin
    Mari, Andrea
    Shammah, Nathan
    Stemen, Nathaniel T.
    Wahl, Misty
    Zeng, William J.
    Orth, Peter P.
    2022 IEEE/ACM THIRD INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS), 2022, : 83 - 93
  • [26] Machine learning for practical quantum error mitigation
    Liao, Haoran
    Wang, Derek S.
    Sitdikov, Iskandar
    Salcedo, Ciro
    Seif, Alireza
    Minev, Zlatko K.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (12) : 1478 - 1486
  • [27] Quantum Error Mitigation Relying on Permutation Filtering
    Xiong, Yifeng
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (03) : 1927 - 1942
  • [28] Learning-Based Quantum Error Mitigation
    Strikis, Armands
    Qin, Dayue
    Chen, Yanzhu
    Benjamin, Simon C.
    Li, Ying
    PRX QUANTUM, 2021, 2 (04):
  • [29] Quantum error mitigation by Pauli check sandwiching
    Gonzales, Alvin
    Shaydulin, Ruslan
    Saleem, Zain H.
    Suchara, Martin
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Genetic Algorithms for Error Mitigation in Quantum Measurement
    Acampora, Giovanni
    Grossi, Michele
    Vitiello, Autilia
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1826 - 1832