Learning-Based Quantum Error Mitigation

被引:104
|
作者
Strikis, Armands [1 ]
Qin, Dayue [2 ]
Chen, Yanzhu [3 ,4 ]
Benjamin, Simon C. [1 ]
Li, Ying [2 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Error compensation;
D O I
10.1103/PRXQuantum.2.040330
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If noisy-intermediate-scale-quantum-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasiprobability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately, these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] A Machine Learning-Based Error Mitigation Approach for Reliable Software Development on IBM's Quantum Computers
    Muqeet, Asmar
    Ali, Shaukat
    Yue, Tao
    Arcaini, Paolo
    COMPANION PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, FSE COMPANION 2024, 2024, : 80 - 91
  • [2] Learning-Based Mitigation of Soft Error Effects on Quaternion Kalman Filter Processing
    Sartori, Tarso Kraemer Sarzi
    Fourati, Hassen
    Bastos, Rodrigo Possamai
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 1079 - 1089
  • [3] Machine learning for practical quantum error mitigation
    Liao, Haoran
    Wang, Derek S.
    Sitdikov, Iskandar
    Salcedo, Ciro
    Seif, Alireza
    Minev, Zlatko K.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (12) : 1478 - 1486
  • [4] Deep learning-based ranging error mitigation method for UWB localization system in greenhouse
    Niu, Ziang
    Yang, Huizhen
    Zhou, Lei
    Taha, Mohamed Farag
    He, Yong
    Qiu, Zhengjun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
  • [5] Machine Learning-Based Rowhammer Mitigation
    Joardar, Biresh Kumar
    Bletsch, Tyler K.
    Chakrabarty, Krishnendu
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (05) : 1393 - 1405
  • [6] Quantum readout error mitigation via deep learning
    Kim, Jihye
    Oh, Byungdu
    Chong, Yonuk
    Hwang, Euyheon
    Park, Daniel K.
    NEW JOURNAL OF PHYSICS, 2022, 24 (07):
  • [7] Automated quantum error mitigation based on probabilistic error reduction
    McDonough, Benjamin
    Mari, Andrea
    Shammah, Nathan
    Stemen, Nathaniel T.
    Wahl, Misty
    Zeng, William J.
    Orth, Peter P.
    2022 IEEE/ACM THIRD INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS), 2022, : 83 - 93
  • [8] Quantum error mitigation
    Cai, Zhenyu
    Babbush, Ryan
    Benjamin, Simon C.
    Endo, Suguru
    Huggins, William J.
    Li, Ying
    Mcclean, Jarrod R.
    O'Brien, Thomas E.
    REVIEWS OF MODERN PHYSICS, 2023, 95 (04)
  • [9] Quantum error mitigation in quantum annealing
    Raymond, Jack
    Amin, Mohammad H.
    King, Andrew D.
    Harris, Richard
    Bernoudy, William
    Berkley, Andrew J.
    Boothby, Kelly
    Smirnov, Anatoly
    Altomare, Fabio
    Babcock, Michael
    Baron, Catia
    Connor, Jake
    Dehn, Martin H.
    Enderud, Colin
    Hoskinson, Emile
    Huang, Shuiyuan
    Johnson, Mark W.
    Ladizinsky, Eric
    Lanting, Trevor
    Macdonald, Allison J. R.
    Marsden, Gaelen
    Molavi, Reza
    Oh, Travis
    Poulin-Lamarre, Gabriel
    Ramp, Hugh
    Rich, Chris
    Clavera, Berta Trullas
    Tsai, Nicholas
    Volkmann, Mark
    Whittaker, Jed D.
    Yao, Jason
    Heinsdorf, Niclas
    Kaushal, Nitin
    Nocera, Alberto
    Franz, Marcel
    Dziarmaga, Jacek
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [10] Replication-Based Quantum Annealing Error Mitigation
    Djidjev, Hristo
    PROCEEDINGS OF THE 21ST ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2024, CF 2024, 2024, : 215 - 223