Cracking mechanism of GH5188 alloy during laser powder bed fusion additive manufacturing

被引:4
|
作者
Wu, Yu [1 ]
Sun, Bingbing [1 ]
Chen, Bingqing [1 ]
Chen, Pei [2 ]
Yan, Taiqi [1 ]
Zhang, Xuejun [1 ]
Huang, Chen [3 ]
Liu, Wei [1 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, 3D Printing Res & Engn Technol Ctr, Beijing 100095, Peoples R China
[2] HFYC Zhenjiang Addit Mfg Co Ltd, 98 Peishan Rd, Zhenjiang 212132, Peoples R China
[3] China Natl Petr & Chem Planning Inst, Petrochem Dept, Beijing 100013, Peoples R China
基金
中国国家自然科学基金;
关键词
Cracking mechanism; GH5188; alloy; Laser powder bed fusion; Additive manufacturing; HOT-CRACKING; SINGLE-CRYSTAL; MICROSTRUCTURE; SUPERALLOYS; SEGREGATION; DEPOSITION; LIQUATION;
D O I
10.1016/j.matchar.2023.113548
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
GH5188 cobalt-based superalloy components fabricated using laser powder bed fusion (LPBF) additive manufacturing technique possess promising application prospects in aviation industry, but high cracking susceptibility of the alloy remains an important concern. In this paper, cracking mechanism of the LPBFed GH5188 alloy was investigated by analyzing microstructure, fracture surfaces, composition distribution and grain boundary characteristics of the prepared sample. It was found that cracks consistently propagate intergranular at grain boundaries with high misorientation angle. The cracks were confirmed to be solidification cracks, due to the existence of fracture surface with dendritic morphology, as well as the absence of eutectic structure, carbide and precipitated phase. Lanthanum oxide particles were observed in the as-built alloy, which may hamper feeding of molten material at interdendritic region, promoting tearing of liquid films. Hence, it could be suggested that low O and La contents help in avoiding crack formation. This work could provide guidance for fabrication of crack-free LPBFed GH5188 alloy components.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Variation of Surface Topography in Laser Powder Bed Fusion Additive Manufacturing of Nickel Super Alloy 625
    Fox, Jason C.
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2019, 124
  • [32] Bimetal printing of high entropy alloy/metallic glass by laser powder bed fusion additive manufacturing
    Wang, Hao
    Chen, Junquan
    Luo, Hailu
    Wang, Di
    Song, Changhui
    Yao, Xiyu
    Chen, Peng
    Yan, Ming
    INTERMETALLICS, 2022, 141
  • [33] Alloy 718: Laser Powder Bed Additive Manufacturing for Turbine Applications
    Kelkar, R.
    Andreaco, A.
    Ott, E.
    Groh, J.
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON SUPERALLOY 718 & DERIVATIVES: ENERGY, AEROSPACE, AND INDUSTRIAL APPLICATIONS, 2018, : 53 - 68
  • [34] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Huang, Yuze
    Fleming, Tristan G.
    Clark, Samuel J.
    Marussi, Sebastian
    Fezzaa, Kamel
    Thiyagalingam, Jeyan
    Leung, Chu Lun Alex
    Lee, Peter D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [35] Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing
    Qu, Minglei
    Guo, Qilin
    Escano, Luis I.
    Clark, Samuel J.
    Fezzaa, Kamel
    Chen, Lianyi
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [36] A framework for forming thermoset polymer networks during laser powder bed fusion additive manufacturing
    Chatham, Camden A.
    Ii, Aaron L. Washington
    ADDITIVE MANUFACTURING, 2023, 72
  • [37] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Yuze Huang
    Tristan G. Fleming
    Samuel J. Clark
    Sebastian Marussi
    Kamel Fezzaa
    Jeyan Thiyagalingam
    Chu Lun Alex Leung
    Peter D. Lee
    Nature Communications, 13
  • [38] The Influence of Powder Reuse on the Properties of Nickel Super Alloy ATI 718™ in Laser Powder Bed Fusion Additive Manufacturing
    Christopher Rock
    Christopher Ledford
    Matias Garcia-Avila
    Harvey West
    Victoria M. Miller
    Mark Pankow
    Ryan Dehoff
    Tim Horn
    Metallurgical and Materials Transactions B, 2021, 52 : 676 - 688
  • [39] Powder movement rules of laser powder bed fusion additive manufacturing aluminum alloy based on discrete element method
    Pan, Lu
    Zhang, Chen-lin
    Liu, Tong
    Wang, Liang
    Zhang, Heng-hua
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (07)
  • [40] The Influence of Powder Reuse on the Properties of Nickel Super Alloy ATI 718™ in Laser Powder Bed Fusion Additive Manufacturing
    Rock, Christopher
    Ledford, Christopher
    Garcia-Avila, Matias
    West, Harvey
    Miller, Victoria M.
    Pankow, Mark
    Dehoff, Ryan
    Horn, Tim
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2021, 52 (02): : 676 - 688