Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing

被引:179
|
作者
Huang, Yuze [1 ,2 ]
Fleming, Tristan G. [3 ]
Clark, Samuel J. [1 ,2 ,4 ]
Marussi, Sebastian [1 ,2 ]
Fezzaa, Kamel [4 ]
Thiyagalingam, Jeyan [5 ]
Leung, Chu Lun Alex [1 ,2 ]
Lee, Peter D. [1 ,2 ]
机构
[1] UCL, UCL Mech Engn, London WC1E 7JE, England
[2] Res Complex Harwell, Harwell Campus, Didcot OX11 0FA, Oxon, England
[3] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
[4] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[5] Sci & Technol Facil Council, Harwell Campus, Didcot OX11 0FA, Oxon, England
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
HYDROGEN POROSITY; ALUMINUM; DYNAMICS; DENUDATION; SIMULATION; COMPONENTS; DIFFUSION; BEHAVIOR;
D O I
10.1038/s41467-022-28694-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Keyhole porosity is a key concern in laser powder-bed fusion (LPBF), potentially impacting component fatigue life. However, some keyhole porosity formation mechanisms, e.g., keyhole fluctuation, collapse and bubble growth and shrinkage, remain unclear. Using synchrotron X-ray imaging we reveal keyhole and bubble behaviour, quantifying their formation dynamics. The findings support the hypotheses that: (i) keyhole porosity can initiate not only in unstable, but also in the transition keyhole regimes created by high laser power-velocity conditions, causing fast radial keyhole fluctuations (2.5-10 kHz); (ii) transition regime collapse tends to occur part way up the rear-wall; and (iii) immediately after keyhole collapse, bubbles undergo rapid growth due to pressure equilibration, then shrink due to metal-vapour condensation. Concurrent with condensation, hydrogen diffusion into the bubble slows the shrinkage and stabilises the bubble size. The keyhole fluctuation and bubble evolution mechanisms revealed here may guide the development of control systems for minimising porosity. Understanding the keyhole porosity formation is important in laser powder bed fusion. Here the authors reveal the dynamics of keyhole fluctuation, and collapse that induces bubble formation with three main stages of evolution; growth, shrinkage, and being captured by the solidification front.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Yuze Huang
    Tristan G. Fleming
    Samuel J. Clark
    Sebastian Marussi
    Kamel Fezzaa
    Jeyan Thiyagalingam
    Chu Lun Alex Leung
    Peter D. Lee
    [J]. Nature Communications, 13
  • [2] Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing
    Guo, Liping
    Liu, Hanjie
    Wang, Hongze
    Wei, Qianglong
    Xiao, Yakai
    Tang, Zijue
    Wu, Yi
    Wang, Haowei
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321
  • [3] Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing
    Qu, Minglei
    Guo, Qilin
    Escano, Luis I.
    Clark, Samuel J.
    Fezzaa, Kamel
    Chen, Lianyi
    [J]. ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [4] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Martin, Aiden A.
    Calta, Nicholas P.
    Khairallah, Saad A.
    Wang, Jenny
    Depond, Phillip J.
    Fong, Anthony Y.
    Thampy, Vivek
    Guss, Gabe M.
    Kiss, Andrew M.
    Stone, Kevin H.
    Tassone, Christopher J.
    Weker, Johanna Nelson
    Toney, Michael F.
    van Buuren, Tony
    Matthews, Manyalibo J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Aiden A. Martin
    Nicholas P. Calta
    Saad A. Khairallah
    Jenny Wang
    Phillip J. Depond
    Anthony Y. Fong
    Vivek Thampy
    Gabe M. Guss
    Andrew M. Kiss
    Kevin H. Stone
    Christopher J. Tassone
    Johanna Nelson Weker
    Michael F. Toney
    Tony van Buuren
    Manyalibo J. Matthews
    [J]. Nature Communications, 10
  • [6] Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process
    Young, Zachary A.
    Guo, Qilin
    Parab, Niranjan D.
    Zhao, Cang
    Qu, Minglei
    Escano, Luis, I
    Fezzaa, Kamel
    Everhart, Wes
    Sun, Tao
    Chen, Lianyi
    [J]. ADDITIVE MANUFACTURING, 2020, 36
  • [7] Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
    King, Wayne E.
    Barth, Holly D.
    Castillo, Victor M.
    Gallegos, Gilbert F.
    Gibbs, John W.
    Hahn, Douglas E.
    Kamath, Chandrika
    Rubenchik, Alexander M.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) : 2915 - 2925
  • [8] Formation mechanisms of lack of fusion and keyhole-induced pore defects in laser powder bed fusion process: A numerical study
    Yang, Xuan
    Li, Yazhi
    Li, Biao
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 188
  • [9] Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625
    Yeung, H.
    Kim, F. H.
    Donmez, M. A.
    Neira, J.
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2022, 183
  • [10] Formation of keyhole and lack of fusion pores during the laser powder bed fusion process
    Shrestha, Subin
    Chou, Kevin
    [J]. MANUFACTURING LETTERS, 2022, 32 : 19 - 23