Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing

被引:30
|
作者
Qu, Minglei [1 ,2 ]
Guo, Qilin [1 ,2 ]
Escano, Luis I. [1 ]
Clark, Samuel J. [3 ]
Fezzaa, Kamel [3 ]
Chen, Lianyi [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Argonne Natl Lab, X Ray Sci Div, Lemont, IL 60439 USA
来源
基金
美国国家科学基金会;
关键词
Keyhole pore; Additive manufacturing; Laser powder bed fusion; Synchrotron x-ray imaging; Nanoparticle; POROSITY FORMATION; DYNAMICS;
D O I
10.1016/j.addlet.2022.100068
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Keyhole pore formation is one of the most detrimental subsurface defects in the laser metal additive manufacturing process. However, effective ways to mitigate keyhole pore formation beyond tuning laser processing conditions during keyhole mode laser melting are still lacking. Here we report a novel approach to mitigate keyhole pore formation during laser powder bed fusion (LPBF) process by using stable nanoparticles. The critical keyhole depth for keyhole pore generation (i.e., the largest keyhole depth without keyhole pore formation) during LPBF of Al6061 increases from 246 & mu;m to 454 & mu;m (85% increase) after adding TiC nanoparticles. In-depth x-ray imaging studies and thermo-fluid dynamics simulation enable us to identify that two mechanisms work together to mitigate keyhole pore generation: (1) adding nanoparticles prevents the keyhole from collapsing by increasing the liquid viscosity to impede the protrusion development; (2) adding nanoparticles slows down the keyhole pore movement by increasing the liquid viscosity, resulting in the recapturing of the pore by the keyhole. We further demonstrate that adding TiC nanoparticles can also eliminate the keyhole fluctuation induced keyhole pore during LPBF of Al6061. Our research provides a potential way to mitigate keyhole pore formation for defect lean metal additive manufacturing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Huang, Yuze
    Fleming, Tristan G.
    Clark, Samuel J.
    Marussi, Sebastian
    Fezzaa, Kamel
    Thiyagalingam, Jeyan
    Leung, Chu Lun Alex
    Lee, Peter D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
    Yuze Huang
    Tristan G. Fleming
    Samuel J. Clark
    Sebastian Marussi
    Kamel Fezzaa
    Jeyan Thiyagalingam
    Chu Lun Alex Leung
    Peter D. Lee
    Nature Communications, 13
  • [3] Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing
    Guo, Liping
    Liu, Hanjie
    Wang, Hongze
    Wei, Qianglong
    Xiao, Yakai
    Tang, Zijue
    Wu, Yi
    Wang, Haowei
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321
  • [4] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Martin, Aiden A.
    Calta, Nicholas P.
    Khairallah, Saad A.
    Wang, Jenny
    Depond, Phillip J.
    Fong, Anthony Y.
    Thampy, Vivek
    Guss, Gabe M.
    Kiss, Andrew M.
    Stone, Kevin H.
    Tassone, Christopher J.
    Weker, Johanna Nelson
    Toney, Michael F.
    van Buuren, Tony
    Matthews, Manyalibo J.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Aiden A. Martin
    Nicholas P. Calta
    Saad A. Khairallah
    Jenny Wang
    Phillip J. Depond
    Anthony Y. Fong
    Vivek Thampy
    Gabe M. Guss
    Andrew M. Kiss
    Kevin H. Stone
    Christopher J. Tassone
    Johanna Nelson Weker
    Michael F. Toney
    Tony van Buuren
    Manyalibo J. Matthews
    Nature Communications, 10
  • [6] Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
    King, Wayne E.
    Barth, Holly D.
    Castillo, Victor M.
    Gallegos, Gilbert F.
    Gibbs, John W.
    Hahn, Douglas E.
    Kamath, Chandrika
    Rubenchik, Alexander M.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) : 2915 - 2925
  • [7] Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625
    Yeung, H.
    Kim, F. H.
    Donmez, M. A.
    Neira, J.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2022, 183
  • [8] Formation of keyhole and lack of fusion pores during the laser powder bed fusion process
    Shrestha, Subin
    Chou, Kevin
    MANUFACTURING LETTERS, 2022, 32 : 19 - 23
  • [9] A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process
    Shrestha, Subin
    Chou, Y. Kevin
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (10):
  • [10] A NUMERICAL STUDY ON THE KEYHOLE FORMATION DURING LASER POWDER BED FUSION PROCESS
    Shrestha, Subin
    Chou, Y. Kevin
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,