Powder movement rules of laser powder bed fusion additive manufacturing aluminum alloy based on discrete element method

被引:0
|
作者
Pan, Lu [1 ,2 ]
Zhang, Chen-lin [3 ]
Liu, Tong [4 ]
Wang, Liang [5 ]
Zhang, Heng-hua [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Wuhu Met Matrix Composite Laser Addit Mfg Engn Res, Wuhu, Anhui, Peoples R China
[3] Univ Sci & Technol China, Sch Engn Sci, Hefei, Anhui, Peoples R China
[4] Anhui Polytech Univ, Sch Mat Sci & Engn, Wuhu, Anhui, Peoples R China
[5] Anhui Top Addit Mfg Technol Co LTD, Wuhu, Anhui, Peoples R China
关键词
Laser powder bed fusion; powder spreading; discrete element; blade; Al-Cu; NUMERICAL-SIMULATION; FLOW; BEHAVIOR;
D O I
10.1177/16878132241264944
中图分类号
O414.1 [热力学];
学科分类号
摘要
Laser Powder Bed Fusion (LPBF) is a promising metal additive manufacturing technology based on layer by layer powder spreading, and powder bed uniformity has a great influence on the forming quality. By Discrete Element Method and powder spreading experiment, the interaction and movement between powder were studied during powder spreading, including powder jamming, rebound, splash, eddy, and empty powder area. Additionally, five kinds of powder spreading schemes were explored, and the new process of one-way reciprocating with tri-splint blade was designed to change the motion state of powder spreading from "blade pushing powder" to "blade holding powder." By increasing the distance between the blade and the working platform form 0 to 20 mu m with the distance between the upper surface of the substrate and the working platform 50 mu m, defects such as powder splash and empty powder decreased. And the uniform powder bed of aluminum alloy powder was achieved with the new process of one-way reciprocating with tri-splint blade structure.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method
    Habiba, Ummay
    Hebert, Rainer. J. J.
    MATERIALS, 2023, 16 (07)
  • [2] Investigating the effect of temperature on powder spreading behaviour in powder bed fusion additive manufacturing process by Discrete Element Method
    Ajabshir, Sina Zinatlou
    Hare, Colin
    Sofia, Daniele
    Barletta, Diego
    Poletto, Massimo
    POWDER TECHNOLOGY, 2024, 436
  • [3] Additive manufacturing of glass with laser powder bed fusion
    Datsiou, Kyriaki Corinna
    Saleh, Ehab
    Spirrett, Fiona
    Goodridge, Ruth
    Ashcroft, Ian
    Eustice, Dave
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4410 - 4414
  • [4] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Liu, Zhuangzhuang
    Zhou, Qihang
    Liang, Xiaokang
    Wang, Xiebin
    Li, Guichuan
    Vanmeensel, Kim
    Xie, Jianxin
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
  • [5] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Zhuangzhuang Liu
    Qihang Zhou
    Xiaokang Liang
    Xiebin Wang
    Guichuan Li
    Kim Vanmeensel
    Jianxin Xie
    International Journal of Extreme Manufacturing, 2024, 6 (02) : 33 - 68
  • [6] On thermal properties of metallic powder in laser powder bed fusion additive manufacturing
    Zhang, Shanshan
    Lane, Brandon
    Whiting, Justin
    Chou, Kevin
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 47 : 382 - 392
  • [7] Recent Progress in Heat-resistant Aluminum Alloy Fabricated by Laser Powder Bed Fusion Additive Manufacturing
    Liu, Shujun
    Xiao, Wenlong
    Yang, Changyi
    Wu, Shufan
    Cailiao Daobao/Materials Reports, 2024, 38 (18):
  • [8] Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy
    Azzougagh, Mohamed Nour
    Keller, Francois-Xavier
    Cabrol, Elodie
    Cici, Mehmet
    Pourchez, Jeremie
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE, 2021, 18 (06) : 223 - 236
  • [9] A METHOD FOR CHARACTERIZING MODEL FIDELITY IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING
    Assouroko, Ibrahim
    Lopez, Felipe
    Witherell, Paul
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 2, 2016,
  • [10] Laser-based powder bed fusion additive manufacturing of pure copper
    Jadhav, Suraj Dinkar
    Goossens, Louca Raphael
    Kinds, Yannis
    Van Hooreweder, Brecht
    Vanmeensel, Kim
    ADDITIVE MANUFACTURING, 2021, 42