On thermal properties of metallic powder in laser powder bed fusion additive manufacturing

被引:41
|
作者
Zhang, Shanshan [1 ]
Lane, Brandon [2 ]
Whiting, Justin [2 ]
Chou, Kevin [1 ]
机构
[1] Univ Louisville, Dept Ind Engn, Louisville, KY 40292 USA
[2] NIST, Engn Lab, Gaithersburg, MD 20899 USA
关键词
Laser powder-bed fusion; Laser flash; Finite element modeling; Inverse method; Powder thermal conductivity; HOT-WIRE METHOD; CONDUCTIVITY; DIFFUSIVITY; RESISTANCE;
D O I
10.1016/j.jmapro.2019.09.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Powder thermal properties play a critical role in laser powder-bed fusion (LPBF) additive manufacturing, specifically, the reduced effective thermal conductivity compared to that of the solid significantly affects heat conduction, which can influence the melt pool characteristics, and consequently, the part mechanical properties. This study intends to indirectly measure the thermal conductivity of metallic powder, nickel-based super alloy 625 (IN625) and Ti-6Al-4V (Ti64), in LPBF using a combined approach that consists of laser flash analysis, finite element (FE) heat transfer modeling and a multivariate inverse method. The test specimens were designed and fabricated by a LPBF system to encapsulate powder in a hollow disk to imitate powder-bed conditions. The as-built specimens were then subjected to laser flash testing to measure the transient thermal response. Next, an FE model replicate the hollow disk samples and laser flash testing was developed. A multi-point optimization algorithm was used to inversely extract the thermal conductivity of LPBF powder from the FE model based on the measured transient thermal response. The results indicate that the thermal conductivity of IN625 powder used in LPBF ranges from 0.65 W/(m.K) to 1.02 W/(m.K) at 100 degrees C and 500 degrees C, respectively, showing a linear relationship with the temperature. On the other hand, Ti64 powder has a lower thermal conductivity than IN625 powder, about 35% to 40% smaller. However, the thermal conductivity ratio of the powder to the respective solid counterpart is quite similar between the two materials, about 4.2% to 6.9% for IN625 and 3.4% to 5.2% for Ti64.
引用
收藏
页码:382 / 392
页数:11
相关论文
共 50 条
  • [1] Additive manufacturing of glass with laser powder bed fusion
    Datsiou, Kyriaki Corinna
    Saleh, Ehab
    Spirrett, Fiona
    Goodridge, Ruth
    Ashcroft, Ian
    Eustice, Dave
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4410 - 4414
  • [2] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [3] A review of powder deposition in additive manufacturing by powder bed fusion
    Avrampos, Panagiotis
    Vosniakos, George-Christopher
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2022, 74 : 332 - 352
  • [4] A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties
    Kotadia, H. R.
    Gibbons, G.
    Das, A.
    Howes, P. D.
    [J]. ADDITIVE MANUFACTURING, 2021, 46
  • [5] Measurement of powder bed density in powder bed fusion additive manufacturing processes
    Jacob, G.
    Donmez, A.
    Slotwinski, J.
    Moylan, S.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (11)
  • [6] Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
    Kizhakkinan, Umesh
    Seetharaman, Sankaranarayanan
    Raghavan, Nagarajan
    Rosen, David W.
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (11):
  • [7] Laser melting modes in metal powder bed fusion additive manufacturing
    Zhao, Cang
    Shi, Bo
    Chen, Shuailei
    Du, Dong
    Sun, Tao
    Simonds, Brian J.
    Fezzaa, Kamel
    Rollett, Anthony D.
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [8] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    [J]. MATERIALS & DESIGN, 2020, 193
  • [9] Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
    Lopez, Felipe
    Witherell, Paul
    Lane, Brandon
    [J]. JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [10] Pulsed laser powder bed fusion additive manufacturing of A356
    Chou, S. C.
    Trask, M.
    Danovitch, J.
    Wang, X. L.
    Choi, J. P.
    Brochu, M.
    [J]. MATERIALS CHARACTERIZATION, 2018, 143 : 27 - 33