Using Machine Learning to Examine Suicidal Ideation After Traumatic Brain Injury A Traumatic Brain Injury Model Systems National Database Study

被引:9
|
作者
Fisher, Lauren B. [1 ,2 ,20 ]
Curtiss, Joshua E. [1 ,2 ]
Klyce, Daniel W. [3 ,4 ,5 ]
Perrin, Paul B. [3 ,6 ]
Juengst, Shannon B. [7 ]
Gary, Kelli W. [8 ]
Niemeier, Janet P. [9 ]
Hammond, Flora M. [10 ,11 ]
Bergquist, Thomas F. [12 ]
Wagner, Amy K. [13 ,14 ]
Rabinowitz, Amanda R. [15 ]
Giacino, Joseph T. [1 ,16 ]
Zafonte, Ross D. [16 ,17 ,18 ,19 ]
机构
[1] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[2] Harvard Med Sch, Dept Psychiat, Boston, MA USA
[3] Cent Virginia Vet Affairs Hlth Care Syst, Richmond, VA USA
[4] Sheltering Arms Inst, Richmond, VA USA
[5] Virginia Commonwealth Univ Hlth Syst, Richmond, VA USA
[6] Virginia Commonwealth Univ, Dept Psychol & Phys Med & Rehabil, Richmond, VA USA
[7] UT Southwestern Med Ctr, Dept Phys Med & Rehabil, Dallas, TX USA
[8] Virginia Commonwealth Univ, Dept Rehabil Counseling, Richmond, VA USA
[9] Univ Alabama Birmingham, Dept Psychol, Birmingham, AL USA
[10] Indiana Univ, Dept Phys Med & Rehabil, Sch Med, Indianapolis, IN USA
[11] Rehabil Hosp Indiana, Indianapolis, IN USA
[12] Mayo Clin Coll Med & Sci, Rochester, MN USA
[13] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Phy Med & Rehabil, Pittsburgh, PA USA
[14] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Neurosci, Pittsburgh, PA USA
[15] Moss Rehabil Res Inst, Elkins Pk, PA USA
[16] Spaulding Rehabil Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[17] Massachusetts Gen Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[18] Brigham & Womens Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[19] Harvard Med Sch, Dept Phys Med & Rehabil, Boston, MA USA
[20] 1 Bowdoin Sq,6th Floor, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
Traumatic Brain Injury; Suicidal Ideation; Depression; Anxiety; Alcohol Use; Machine Learning; SELF-AWARENESS; ITEM; 9; RISK; DEPRESSION; PHQ-9; REHABILITATION; DISORDER; VALIDITY; RATES; METAANALYSIS;
D O I
10.1097/PHM.0000000000002054
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
ObjectiveThe aim of the study was to predict suicidal ideation 1 yr after moderate to severe traumatic brain injury.DesignThis study used a cross-sectional design with data collected through the prospective, longitudinal Traumatic Brain Injury Model Systems network at hospitalization and 1 yr after injury. Participants who completed the Patient Health Questionnaire-9 suicide item at year 1 follow-up (N = 4328) were included.ResultsA gradient boosting machine algorithm demonstrated the best performance in predicting suicidal ideation 1 yr after traumatic brain injury. Predictors were Patient Health Questionnaire-9 items (except suicidality), Generalized Anxiety Disorder-7 items, and a measure of heavy drinking. Results of the 10-fold cross-validation gradient boosting machine analysis indicated excellent classification performance with an area under the curve of 0.882. Sensitivity was 0.85 and specificity was 0.77. Accuracy was 0.78 (95% confidence interval, 0.77-0.79). Feature importance analyses revealed that depressed mood and guilt were the most important predictors of suicidal ideation, followed by anhedonia, concentration difficulties, and psychomotor disturbance.ConclusionsOverall, depression symptoms were most predictive of suicidal ideation. Despite the limited clinical impact of the present findings, machine learning has potential to improve prediction of suicidal behavior, leveraging electronic health record data, to identify individuals at greatest risk, thereby facilitating intervention and optimization of long-term outcomes after traumatic brain injury.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 50 条
  • [21] Age Moderates the Effect of Injury Severity on Functional Trajectories in Traumatic Brain Injury: A Study Using the NIDILRR Traumatic Brain Injury Model Systems National Dataset
    Winter, Laraine
    Mensinger, Janell L.
    Moriarty, Helene J.
    Robinson, Keith M.
    McKay, Michelle
    Leiby, Benjamin E.
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (09)
  • [22] Rates and Predictors of Suicidal Ideation During the First Year After Traumatic Brain Injury
    Mackelprang, Jessica L.
    Bombardier, Charles H.
    Fann, Jesse R.
    Temkin, Nancy R.
    Barber, Jason K.
    Dikmen, Sureyya S.
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2014, 104 (07) : E100 - E107
  • [23] Extension of the Representativeness of the Traumatic Brain Injury Model Systems National Database: 2001 to 2010
    Cuthbert, Jeffrey P.
    Corrigan, John D.
    Whiteneck, Gale G.
    Harrison-Felix, Cynthia
    Graham, James E.
    Bell, Jeneita M.
    Coronado, Victor G.
    JOURNAL OF HEAD TRAUMA REHABILITATION, 2012, 27 (06) : E15 - E27
  • [24] Using machine learning to predict mortality and morbidity after Traumatic Brain Injury
    Vasileios, Theiou
    Salapatas-Gkinis, Aris
    Theofanopoulos, Athanasios
    Giannakopoulos, George
    Tsitsipanis, Christos
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [25] Advancing knowledge on alexithymia in civilians and veterans with traumatic brain injury: a traumatic brain injury model systems study
    Neumann, Dawn
    Hammond, Flora
    Sevigny, Mitch
    Finn, Jacob
    Klyce, Daniel
    Sander, Angelle
    Bushnik, Tamara
    Ketchum, Jessica
    Chung, Joyce
    Bogner, Jennifer
    BRAIN INJURY, 2023, 37 : 98 - 98
  • [26] Predictors of Employment Outcomes in Veterans With Traumatic Brain Injury: A VA Traumatic Brain Injury Model Systems Study
    Dillahunt-Aspillaga, Christina
    Nakase-Richardson, Risa
    Hart, Tessa
    Powell-Cope, Gail
    Dreer, Laura E.
    Eapen, Blessen C.
    Barnett, Scott D.
    Mellick, Dave
    Haskin, Adam
    Silva, Marc A.
    JOURNAL OF HEAD TRAUMA REHABILITATION, 2017, 32 (04) : 271 - 282
  • [27] Primary Language and Participation Outcomes in Hispanics With Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study
    Sander, Angelle M.
    Ketchum, Jessica M.
    Lequerica, Anthony H.
    Pappadis, Monique R.
    Bushnik, Tamara
    Hammond, Flora M.
    Sevigny, Mitch
    JOURNAL OF HEAD TRAUMA REHABILITATION, 2021, 36 (04) : E218 - E225
  • [28] Longitudinal Description of the Glasgow Outcome Scale-Extended for Individuals in the Traumatic Brain Injury Model Systems National Database: A National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems Study
    Pretz, Christopher R.
    Dams-O'Connor, Kristen
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2013, 94 (12): : 2486 - 2493
  • [29] Hypopituitarism associated with traumatic brain injury - Analysis of the pecs traumatic brain injury database
    Szellar, Dora
    Mezosi, Emese
    Nemes, Orsolya
    Nagy, Zsuzsanna
    Bodis, Beata
    Bajnok, Laszlo
    Czeiter, Endre
    Doczi, Tamas
    Buki, Andras
    JOURNAL OF NEUROTRAUMA, 2008, 25 (07) : 933 - 933
  • [30] Pituitary insufficiency after traumatic brain injury - Preliminary data from the Pecs Traumatic Brain Injury Database
    Szellar, D.
    Mezosi, E.
    Kosztolanyi, P.
    Nemes, O.
    Nagy, Zs.
    Bodis, B.
    Bajnok, L.
    Czeiter, E.
    Doczi, T.
    Buki, A.
    PROCEEDINGS OF THE 13TH EUROPEAN CONGRESS OF NEUROSURGERY, 2007, : 343 - +