Using Machine Learning to Examine Suicidal Ideation After Traumatic Brain Injury A Traumatic Brain Injury Model Systems National Database Study

被引:9
|
作者
Fisher, Lauren B. [1 ,2 ,20 ]
Curtiss, Joshua E. [1 ,2 ]
Klyce, Daniel W. [3 ,4 ,5 ]
Perrin, Paul B. [3 ,6 ]
Juengst, Shannon B. [7 ]
Gary, Kelli W. [8 ]
Niemeier, Janet P. [9 ]
Hammond, Flora M. [10 ,11 ]
Bergquist, Thomas F. [12 ]
Wagner, Amy K. [13 ,14 ]
Rabinowitz, Amanda R. [15 ]
Giacino, Joseph T. [1 ,16 ]
Zafonte, Ross D. [16 ,17 ,18 ,19 ]
机构
[1] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[2] Harvard Med Sch, Dept Psychiat, Boston, MA USA
[3] Cent Virginia Vet Affairs Hlth Care Syst, Richmond, VA USA
[4] Sheltering Arms Inst, Richmond, VA USA
[5] Virginia Commonwealth Univ Hlth Syst, Richmond, VA USA
[6] Virginia Commonwealth Univ, Dept Psychol & Phys Med & Rehabil, Richmond, VA USA
[7] UT Southwestern Med Ctr, Dept Phys Med & Rehabil, Dallas, TX USA
[8] Virginia Commonwealth Univ, Dept Rehabil Counseling, Richmond, VA USA
[9] Univ Alabama Birmingham, Dept Psychol, Birmingham, AL USA
[10] Indiana Univ, Dept Phys Med & Rehabil, Sch Med, Indianapolis, IN USA
[11] Rehabil Hosp Indiana, Indianapolis, IN USA
[12] Mayo Clin Coll Med & Sci, Rochester, MN USA
[13] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Phy Med & Rehabil, Pittsburgh, PA USA
[14] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Neurosci, Pittsburgh, PA USA
[15] Moss Rehabil Res Inst, Elkins Pk, PA USA
[16] Spaulding Rehabil Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[17] Massachusetts Gen Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[18] Brigham & Womens Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[19] Harvard Med Sch, Dept Phys Med & Rehabil, Boston, MA USA
[20] 1 Bowdoin Sq,6th Floor, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
Traumatic Brain Injury; Suicidal Ideation; Depression; Anxiety; Alcohol Use; Machine Learning; SELF-AWARENESS; ITEM; 9; RISK; DEPRESSION; PHQ-9; REHABILITATION; DISORDER; VALIDITY; RATES; METAANALYSIS;
D O I
10.1097/PHM.0000000000002054
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
ObjectiveThe aim of the study was to predict suicidal ideation 1 yr after moderate to severe traumatic brain injury.DesignThis study used a cross-sectional design with data collected through the prospective, longitudinal Traumatic Brain Injury Model Systems network at hospitalization and 1 yr after injury. Participants who completed the Patient Health Questionnaire-9 suicide item at year 1 follow-up (N = 4328) were included.ResultsA gradient boosting machine algorithm demonstrated the best performance in predicting suicidal ideation 1 yr after traumatic brain injury. Predictors were Patient Health Questionnaire-9 items (except suicidality), Generalized Anxiety Disorder-7 items, and a measure of heavy drinking. Results of the 10-fold cross-validation gradient boosting machine analysis indicated excellent classification performance with an area under the curve of 0.882. Sensitivity was 0.85 and specificity was 0.77. Accuracy was 0.78 (95% confidence interval, 0.77-0.79). Feature importance analyses revealed that depressed mood and guilt were the most important predictors of suicidal ideation, followed by anhedonia, concentration difficulties, and psychomotor disturbance.ConclusionsOverall, depression symptoms were most predictive of suicidal ideation. Despite the limited clinical impact of the present findings, machine learning has potential to improve prediction of suicidal behavior, leveraging electronic health record data, to identify individuals at greatest risk, thereby facilitating intervention and optimization of long-term outcomes after traumatic brain injury.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 50 条
  • [31] Incidence, risk factors, and outcomes of fecal incontinence after acute brain injury: Findings form the traumatic brain injury model systems national database
    Foxx-Orenstein, A
    Kolakowsky-Hayner, S
    Marwitz, JH
    Cifu, DX
    Dunbar, A
    Englander, J
    Francisco, G
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2003, 84 (02): : 231 - 237
  • [32] Role of alexithymia in suicide ideation after traumatic brain injury
    Wood, Rodger L. L.
    Williams, Claire
    Lewis, Ruth
    JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2010, 16 (06) : 1108 - 1114
  • [33] Relations Among Suicidal Ideation, Depressive Symptoms, and Functional Independence During the 10 Years After Traumatic Brain Injury: A Model Systems Study
    Perrin, Paul B.
    Klyce, Daniel W.
    Fisher, Lauren B.
    Juengst, Shannon B.
    Hammond, Flora M.
    Gary, Kelli W.
    Niemeier, Janet P.
    Bergquist, Thomas F.
    Bombardier, Charles H.
    Rabinowitz, Amanda R.
    Zafonte, Ross D.
    Wagner, Amy K.
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2022, 103 (01): : 69 - 74
  • [34] Prevalence of Cardiovascular Conditions After Traumatic Brain Injury: A Comparison Between the Traumatic Brain Injury Model Systems and the National Health and Nutrition Examination Survey
    Pinto, Shanti M.
    Thakur, Bhaskar
    Kumar, Raj G.
    Rabinowitz, Amanda
    Zafonte, Ross
    Walker, William C.
    Ding, Kan
    Driver, Simon
    Venkatesan, Umesh M.
    Moralez, Gilbert
    Bell, Kathleen R.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (09):
  • [35] A Disabled Army Veteran with Severe Traumatic Brain Injury and Chronic Suicidal Ideation
    Matthew, Binoj J.
    Gedzior, Joanna S.
    PSYCHIATRIC ANNALS, 2016, 46 (03) : 157 - 160
  • [36] Test-Retest Reliability of Traumatic Brain Injury Outcome Measures: A Traumatic Brain Injury Model Systems Study
    Bogner, Jennifer A.
    Whiteneck, Gale G.
    MacDonald, Jessica
    Juengst, Shannon B.
    Brown, Allen W.
    Philippus, Angela M.
    Marwitz, Jennifer H.
    Lengenfelder, Jeannie
    Mellick, Dave
    Arenth, Patricia
    Corrigan, John D.
    JOURNAL OF HEAD TRAUMA REHABILITATION, 2017, 32 (05) : E1 - E16
  • [37] Machine Learning for Predicting Discharge Disposition After Traumatic Brain Injury
    Satyadev, Nihal
    Warman, Pranav I. I.
    Seas, Andreas
    Kolls, Brad J. J.
    Haglund, Michael M. M.
    Fuller, Anthony T. T.
    Dunn, Timothy W. W.
    NEUROSURGERY, 2022, 90 (06) : 768 - 774
  • [38] Incidence and risk factors of posttraumatic seizures following traumatic brain injury: A Traumatic Brain Injury Model Systems Study
    Ritter, Anne C.
    Wagner, Amy K.
    Fabio, Anthony
    Pugh, Mary Jo
    Walker, William C.
    Szaflarski, Jerzy P.
    Zafonte, Ross D.
    Brown, Allen W.
    Hammond, Flora M.
    Bushnik, Tamara
    Johnson-Greene, Douglas
    Shea, Timothy
    Krellman, Jason W.
    Rosenthal, Joseph A.
    Dreer, Laura E.
    EPILEPSIA, 2016, 57 (12) : 1968 - 1977
  • [39] Return to Driving After Moderate-to-Severe Traumatic Brain Injury: A Traumatic Brain Injury Model System Study
    Novack, Thomas A.
    Zhang, Yue
    Kennedy, Richard
    Rapport, Lisa J.
    Watanabe, Thomas K.
    Monden, Kimberley R.
    Dreer, Laura E.
    Bergquist, Thomas
    Bombardier, Charles
    Brunner, Robert
    Goldin, Yelena
    Marwitz, Jennifer
    Niemeier, Janet P.
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2021, 102 (08): : 1568 - 1575
  • [40] Sexual Functioning 1 Year After Traumatic Brain Injury: Findings From a Prospective Traumatic Brain Injury Model Systems Collaborative Study
    Sander, Angelle M.
    Maestas, Kacey Little
    Pappadis, Monique R.
    Sherer, Mark
    Hammond, Flora M.
    Hanks, Robin
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2012, 93 (08): : 1331 - 1337