Using Machine Learning to Examine Suicidal Ideation After Traumatic Brain Injury A Traumatic Brain Injury Model Systems National Database Study

被引:9
|
作者
Fisher, Lauren B. [1 ,2 ,20 ]
Curtiss, Joshua E. [1 ,2 ]
Klyce, Daniel W. [3 ,4 ,5 ]
Perrin, Paul B. [3 ,6 ]
Juengst, Shannon B. [7 ]
Gary, Kelli W. [8 ]
Niemeier, Janet P. [9 ]
Hammond, Flora M. [10 ,11 ]
Bergquist, Thomas F. [12 ]
Wagner, Amy K. [13 ,14 ]
Rabinowitz, Amanda R. [15 ]
Giacino, Joseph T. [1 ,16 ]
Zafonte, Ross D. [16 ,17 ,18 ,19 ]
机构
[1] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[2] Harvard Med Sch, Dept Psychiat, Boston, MA USA
[3] Cent Virginia Vet Affairs Hlth Care Syst, Richmond, VA USA
[4] Sheltering Arms Inst, Richmond, VA USA
[5] Virginia Commonwealth Univ Hlth Syst, Richmond, VA USA
[6] Virginia Commonwealth Univ, Dept Psychol & Phys Med & Rehabil, Richmond, VA USA
[7] UT Southwestern Med Ctr, Dept Phys Med & Rehabil, Dallas, TX USA
[8] Virginia Commonwealth Univ, Dept Rehabil Counseling, Richmond, VA USA
[9] Univ Alabama Birmingham, Dept Psychol, Birmingham, AL USA
[10] Indiana Univ, Dept Phys Med & Rehabil, Sch Med, Indianapolis, IN USA
[11] Rehabil Hosp Indiana, Indianapolis, IN USA
[12] Mayo Clin Coll Med & Sci, Rochester, MN USA
[13] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Phy Med & Rehabil, Pittsburgh, PA USA
[14] Univ Pittsburgh, Clin & Translat Sci Inst, Ctr Neurosci, Safar Ctr Resuscitat Res,Dept Neurosci, Pittsburgh, PA USA
[15] Moss Rehabil Res Inst, Elkins Pk, PA USA
[16] Spaulding Rehabil Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[17] Massachusetts Gen Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[18] Brigham & Womens Hosp, Dept Phys Med & Rehabil, Boston, MA USA
[19] Harvard Med Sch, Dept Phys Med & Rehabil, Boston, MA USA
[20] 1 Bowdoin Sq,6th Floor, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
Traumatic Brain Injury; Suicidal Ideation; Depression; Anxiety; Alcohol Use; Machine Learning; SELF-AWARENESS; ITEM; 9; RISK; DEPRESSION; PHQ-9; REHABILITATION; DISORDER; VALIDITY; RATES; METAANALYSIS;
D O I
10.1097/PHM.0000000000002054
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
ObjectiveThe aim of the study was to predict suicidal ideation 1 yr after moderate to severe traumatic brain injury.DesignThis study used a cross-sectional design with data collected through the prospective, longitudinal Traumatic Brain Injury Model Systems network at hospitalization and 1 yr after injury. Participants who completed the Patient Health Questionnaire-9 suicide item at year 1 follow-up (N = 4328) were included.ResultsA gradient boosting machine algorithm demonstrated the best performance in predicting suicidal ideation 1 yr after traumatic brain injury. Predictors were Patient Health Questionnaire-9 items (except suicidality), Generalized Anxiety Disorder-7 items, and a measure of heavy drinking. Results of the 10-fold cross-validation gradient boosting machine analysis indicated excellent classification performance with an area under the curve of 0.882. Sensitivity was 0.85 and specificity was 0.77. Accuracy was 0.78 (95% confidence interval, 0.77-0.79). Feature importance analyses revealed that depressed mood and guilt were the most important predictors of suicidal ideation, followed by anhedonia, concentration difficulties, and psychomotor disturbance.ConclusionsOverall, depression symptoms were most predictive of suicidal ideation. Despite the limited clinical impact of the present findings, machine learning has potential to improve prediction of suicidal behavior, leveraging electronic health record data, to identify individuals at greatest risk, thereby facilitating intervention and optimization of long-term outcomes after traumatic brain injury.
引用
收藏
页码:137 / 143
页数:7
相关论文
共 50 条
  • [41] Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
    Rahul Raj
    Jenni M. Wennervirta
    Jonathan Tjerkaski
    Teemu M. Luoto
    Jussi P. Posti
    David W. Nelson
    Riikka Takala
    Stepani Bendel
    Eric P. Thelin
    Teemu Luostarinen
    Miikka Korja
    npj Digital Medicine, 5
  • [42] Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
    Raj, Rahul
    Wennervirta, Jenni M.
    Tjerkaski, Jonathan
    Luoto, Teemu M.
    Posti, Jussi P.
    Nelson, David W.
    Takala, Riikka
    Bendel, Stepani
    Thelin, Eric P.
    Luostarinen, Teemu
    Korja, Miikka
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [43] Machine Learning Approaches to Prognostication in Traumatic Brain Injury
    Neeraj Badjatia
    Jamie Podell
    Ryan B. Felix
    Lujie Karen Chen
    Kenneth Dalton
    Tina I. Wang
    Shiming Yang
    Peter Hu
    Current Neurology and Neuroscience Reports, 2025, 25 (1)
  • [44] Machine Learning Opportunities in Traumatic Brain Injury Patients
    Noor, M. Marzia
    Rahman, Md Moshiur
    Agrawal, Amit
    Moscote-Salazar, Luis Rafael
    INDIAN JOURNAL OF NEUROTRAUMA, 2025,
  • [45] A NATIONAL BIOBANK AND DATABASE FOR PATIENTS WITH TRAUMATIC BRAIN INJURY (CANTBI)
    Hutchison, Jamie
    Wilson, Elisa
    Panenka, William
    Silverberg, Noah
    Wellington, Cheryl L.
    Winston, Brent
    Esser, Michael
    Guerguerian, Anne-Marie
    Sinopoli, Katia
    Green, Robin
    Colantonio, Angela
    Lacorix, Jacques
    Clarke, David
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A258 - A258
  • [46] Descriptive Modeling of Longitudinal Outcome Measures in Traumatic Brain Injury: A National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems Study
    Pretz, Christopher R.
    Kozlowski, Allan J.
    Dams-O'Connor, Kristen
    Kreider, Scott
    Cuthbert, Jeffery P.
    Corrigan, John D.
    Heinemann, Allen W.
    Whiteneck, Gale
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2013, 94 (03): : 579 - 588
  • [47] Classification of Electroencephalogram in a Mouse Model of Traumatic Brain Injury Using Machine Learning Approaches
    Vishwanath, Manoj
    Jafarlou, Salar
    Shin, Ikhwan
    Dutt, Nikil
    Rahmani, Amir M.
    Lim, Miranda M.
    Cao, Hung
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 3335 - 3338
  • [48] Suicidal impulsivity secondary to traumatic brain injury
    Fernandez Logrono, J.
    Vazquez Arjona, C. I.
    Romero Manas, I.
    EUROPEAN PSYCHIATRY, 2024, 67 : S780 - S781
  • [49] Predictive modeling in pediatric traumatic brain injury using machine learning
    Chong, Shu-Ling
    Liu, Nan
    Barbier, Sylvaine
    Ong, Marcus Eng Hock
    BMC MEDICAL RESEARCH METHODOLOGY, 2015, 15
  • [50] Traumatic Brain Injury and Suicidal Behavior: A Review
    Wadhawan, Abhishek
    Stiller, John W.
    Potocki, Eileen
    Okusaga, Olaoluwa
    Dagdag, Aline
    Lowry, Christopher A.
    Benros, Michael E.
    Postolache, Teodor T.
    JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (04) : 1339 - 1370