Statistically Valid Variational Bayes Algorithm for Ising Model Parameter Estimation

被引:1
|
作者
Kim, Minwoo [1 ]
Bhattacharya, Shrijita [2 ]
Maiti, Tapabrata [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Stat Program, Thuwal, Saudi Arabia
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Black box variational inference; Coupling matrix; ELBO; Kullback-Leibler distance; Posterior contraction rates; Pseudo-likelihood; Stochastic Optimization; VARIABLE SELECTION; LIKELIHOOD; INFERENCE;
D O I
10.1080/10618600.2023.2217869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead, to study the Bayesian estimation of two-parameter, inverse temperature and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters. for this article are available online.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [21] EvoVGM: a Deep Variational Generative Model for Evolutionary Parameter Estimation
    Remita, Amine M.
    Diallo, Abdoulaye Banire
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,
  • [22] Variational Bayesian Parameter Estimation Techniques for the General Linear Model
    Starke, Ludger
    Osiwald, Dirk
    FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [23] Trajectory Prediction Algorithm Based on Variational Bayes
    Ma, Xiaolong
    Liu, Gang
    He, Bing
    Zhang, Kaijie
    Zhang, Xianyang
    Zhao, Xin
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [24] Variational State and Parameter Estimation
    Courts, Jarrad
    Hendriks, Johannes
    Wills, Adrian
    Schon, Thomas B.
    Ninness, Brett
    IFAC PAPERSONLINE, 2021, 54 (07): : 732 - 737
  • [25] Analysis of dynamic Ising model by a variational approximate method: Estimation of transfer entropy
    Kiwata, Hirohito
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [26] Stochastic Precipitation Generation for the Xilingol League Using Hidden Markov Models with Variational Bayes Parameter Estimation
    Zhang, Shenyi
    Tuerde, Mulati
    Hu, Xijian
    WATER, 2023, 15 (20)
  • [27] ON VARIATIONAL BAYES ESTIMATION AND VARIATIONAL INFORMATION CRITERIA FOR LINEAR REGRESSION MODELS
    You, Chong
    Ormerod, John T.
    Mueller, Samuel
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2014, 56 (01) : 73 - 87
  • [28] New algorithm for ARMA model parameter estimation
    Chon, Ki H.
    Lu, Sheng
    Annals of Biomedical Engineering, 2000, 28 (SUPPL. 1)
  • [29] Variational Bayes Inference for the DINA Model
    Yamaguchi, Kazuhiro
    Okada, Kensuke
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2020, 45 (05) : 569 - 597
  • [30] Variational Bayes under Model Misspecification
    Wang, Yixin
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32