Statistically Valid Variational Bayes Algorithm for Ising Model Parameter Estimation

被引:1
|
作者
Kim, Minwoo [1 ]
Bhattacharya, Shrijita [2 ]
Maiti, Tapabrata [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Stat Program, Thuwal, Saudi Arabia
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Black box variational inference; Coupling matrix; ELBO; Kullback-Leibler distance; Posterior contraction rates; Pseudo-likelihood; Stochastic Optimization; VARIABLE SELECTION; LIKELIHOOD; INFERENCE;
D O I
10.1080/10618600.2023.2217869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead, to study the Bayesian estimation of two-parameter, inverse temperature and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters. for this article are available online.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [31] A variational Bayes method for pharmacokinetic model
    Park, Sun
    Jo, Seongil
    Lee, Woojoo
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (01) : 9 - 23
  • [32] Image Denoising method based on NSCT bivariate model and Variational Bayes threshold estimation
    Wang Deyan
    Xiao Yin
    Gao Ya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 8927 - 8941
  • [33] Image Denoising method based on NSCT bivariate model and Variational Bayes threshold estimation
    Wang Deyan
    Xiao Yin
    Gao Ya
    Multimedia Tools and Applications, 2019, 78 : 8927 - 8941
  • [34] Modified variational Bayes EM estimation of hidden Markov tree model of cell lineages
    Olariu, Victor
    Coca, Daniel
    Billings, Stephen A.
    Tonge, Peter
    Gokhale, Paul
    Andrews, Peter W.
    Kadirkamanathan, Visakan
    BIOINFORMATICS, 2009, 25 (21) : 2824 - 2830
  • [35] GROUP-SPARSE ADAPTIVE VARIATIONAL BAYES ESTIMATION
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1342 - 1346
  • [36] BAYES ESTIMATION OF THE BINOMIAL PARAMETER-N
    HAMEDANI, GG
    WALTER, GG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (06) : 1829 - 1843
  • [37] Robust estimation with variational Bayes in presence of competing risks
    Rai, Himanshu
    Tomer, Sanjeev K.
    Chaturvedi, Anoop
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 207 - 223
  • [39] Improved variational Bayes inference for transcript expression estimation
    Papastamoulis, Panagiotis
    Hensman, James
    Glaus, Peter
    Rattray, Magnus
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2014, 13 (02) : 203 - 216
  • [40] Robust estimation with variational Bayes in presence of competing risks
    Himanshu Rai
    Sanjeev K. Tomer
    Anoop Chaturvedi
    METRON, 2021, 79 : 207 - 223