Statistically Valid Variational Bayes Algorithm for Ising Model Parameter Estimation

被引:1
|
作者
Kim, Minwoo [1 ]
Bhattacharya, Shrijita [2 ]
Maiti, Tapabrata [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Stat Program, Thuwal, Saudi Arabia
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Black box variational inference; Coupling matrix; ELBO; Kullback-Leibler distance; Posterior contraction rates; Pseudo-likelihood; Stochastic Optimization; VARIABLE SELECTION; LIKELIHOOD; INFERENCE;
D O I
10.1080/10618600.2023.2217869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead, to study the Bayesian estimation of two-parameter, inverse temperature and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters. for this article are available online.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [41] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL BASED ON VARIATIONAL BAYESIAN LEARNING
    Zhao, Linchang
    Shang, Zhaowei
    Qin, Anyong
    Tang, Yuan Yan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 99 - 104
  • [42] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Polly J. Smith
    Sarah L. Dance
    Michael J. Baines
    Nancy K. Nichols
    Tania R. Scott
    Ocean Dynamics, 2009, 59 : 697 - 708
  • [43] Variational Bayes Group Sparse Time-Adaptive Parameter Estimation With Either Known or Unknown Sparsity Pattern
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (12) : 3194 - 3206
  • [44] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Smith, Polly J.
    Dance, Sarah L.
    Baines, Michael J.
    Nichols, Nancy K.
    Scott, Tania R.
    OCEAN DYNAMICS, 2009, 59 (05) : 697 - 708
  • [45] Parameter estimation solving a weak constraint variational formulation for an Ekman model
    Eknes, M
    Evensen, G
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1997, 102 (C6): : 12479 - 12491
  • [46] The coreset variational Bayes (CVB) algorithm for mixture analysis
    Liu, Qianying
    McGrory, Clare A.
    Baxter, Peter W. J.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (02) : 267 - 279
  • [47] A fast algorithm for statistically optimized orientation estimation
    Mühlich, M
    Mester, R
    PATTERN RECOGNITION, PROCEEDINGS, 2005, 3663 : 238 - 245
  • [48] GLSDC Based Parameter Estimation Algorithm for a PMSM Model
    Sel, Artun
    Sel, Bilgehan
    Kasnakoglu, Cosku
    ENERGIES, 2021, 14 (03)
  • [49] Genetic algorithm based parameter estimation of Nash model
    Dong, Si-Hui
    WATER RESOURCES MANAGEMENT, 2008, 22 (04) : 525 - 533
  • [50] Genetic Algorithm Based Parameter Estimation of Nash Model
    Si-Hui Dong
    Water Resources Management, 2008, 22 : 525 - 533