Variational State and Parameter Estimation

被引:5
|
作者
Courts, Jarrad [1 ]
Hendriks, Johannes [1 ]
Wills, Adrian [1 ]
Schon, Thomas B. [2 ]
Ninness, Brett [1 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
[2] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
瑞典研究理事会;
关键词
Bayesian inference; system identification; variational inference; nonlinear models; parameter estimation;
D O I
10.1016/j.ifacol.2021.08.448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models. Generally, this problem does not have a tractable solution and approximations must be utilised. In this work, a variational approach is used to provide an assumed density which approximates the desired, intractable, distribution. The approach is deterministic and results in an optimisation problem of a standard form. Due to the parametrisation of the assumed density selected first- and second-order derivatives are readily available which allows for efficient solutions. The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples. Copyright (C) 2021 The Authors.
引用
收藏
页码:732 / 737
页数:6
相关论文
共 50 条
  • [1] Systematic variational method for statistical nonlinear state and parameter estimation
    Ye, Jingxin
    Rey, Daniel
    Kadakia, Nirag
    Eldridge, Michael
    Morone, Uriel I.
    Rozdeba, Paul
    Abarbanel, Henry D. I.
    Quinn, John C.
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [2] Collaborative Estimation of State and Guidance Parameter for Interceptor Based on Variational Bayesian Technique
    Lin, Haoshen
    Zhao, Xin
    Li, Zhenhua
    Hu, Chen
    An, Xibin
    IEEE ACCESS, 2020, 8 : 164077 - 164088
  • [3] Sensitivity of response functions in variational data assimilation for joint parameter and initial state estimation
    Shutyaev, V.
    Le Dimet, F. -X.
    Parmuzin, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [4] Bayesian parameter estimation via variational methods
    Jaakkola, TS
    Jordan, MI
    STATISTICS AND COMPUTING, 2000, 10 (01) : 25 - 37
  • [5] Parameter Estimation with Constraints Based on Variational Method
    Shi, Wen-ming
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2010, 9 (01) : 105 - 108
  • [6] PARAMETER-ESTIMATION IN VARIATIONAL GRID GENERATION
    CASTILLO, J
    STEINBERG, S
    ROACHE, PJ
    APPLIED MATHEMATICS AND COMPUTATION, 1988, 28 (02) : 155 - 177
  • [7] Bayesian parameter estimation via variational methods
    Tommi S. Jaakkola
    Michael I. Jordan
    Statistics and Computing, 2000, 10 : 25 - 37
  • [8] Analytical Four-Dimensional Ensemble Variational Data Assimilation for Joint State and Parameter Estimation
    Liang, Kangzhuang
    Li, Wei
    Han, Guijun
    Gong, Yantian
    Liu, Siyuan
    ATMOSPHERE, 2022, 13 (06)
  • [9] Dynamical State and Parameter Estimation
    Abarbanel, Henry D. I.
    Creveling, Daniel R.
    Farsian, Reza
    Kostuk, Mark
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04): : 1341 - 1381
  • [10] Estimation of the optimal variational parameter via SNR analysis
    Gilboa, G
    Sochen, NA
    Zeevi, YY
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 230 - 241