Variational State and Parameter Estimation

被引:5
|
作者
Courts, Jarrad [1 ]
Hendriks, Johannes [1 ]
Wills, Adrian [1 ]
Schon, Thomas B. [2 ]
Ninness, Brett [1 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
[2] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
瑞典研究理事会;
关键词
Bayesian inference; system identification; variational inference; nonlinear models; parameter estimation;
D O I
10.1016/j.ifacol.2021.08.448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models. Generally, this problem does not have a tractable solution and approximations must be utilised. In this work, a variational approach is used to provide an assumed density which approximates the desired, intractable, distribution. The approach is deterministic and results in an optimisation problem of a standard form. Due to the parametrisation of the assumed density selected first- and second-order derivatives are readily available which allows for efficient solutions. The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples. Copyright (C) 2021 The Authors.
引用
收藏
页码:732 / 737
页数:6
相关论文
共 50 条
  • [21] Variational Inference With Parameter Learning Applied to Vehicle Trajectory Estimation
    Wong, Jeremy Nathan
    Yoon, David Juny
    Schoellig, Angela P.
    Barfoot, Timothy D.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 5291 - 5298
  • [22] Application of variational calculus to parameter estimation in a real hydrological system
    Van Tri Nguyen
    Georges, Didier
    Besancon, Gildas
    EUROPEAN JOURNAL OF CONTROL, 2021, 60 : 11 - 19
  • [23] Parameter estimation with interacting bad data in state estimation
    Yang, CL
    Fukui, S
    CONTROL OF POWER SYSTEMS AND POWER PLANTS 1997 (CPSPP'97), 1998, : 399 - 404
  • [24] Resolver angle estimation using parameter and state estimation
    Han, Sekyung
    Han, Soohee
    MEASUREMENT, 2016, 93 : 460 - 464
  • [25] JOINT PARAMETER-STATE ESTIMATION
    JAKEMAN, A
    YOUNG, P
    ELECTRONICS LETTERS, 1979, 15 (19) : 582 - 583
  • [26] Bounding methods for state and parameter estimation
    Veres, Sandor M.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (03) : 189 - 190
  • [27] PARAMETER AND STATE ESTIMATION OF A NONSTATIONARY PROCESS
    FURUTA, K
    PAQUET, JG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (06) : 770 - &
  • [28] The DSD and conventional state/parameter estimation
    Wang, P
    Aldemir, T
    PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOL 1- 6, 2004, : 1809 - 1814
  • [29] A survey of parameter and state estimation in queues
    Asanjarani, Azam
    Nazarathy, Yoni
    Taylor, Peter
    QUEUEING SYSTEMS, 2021, 97 (1-2) : 39 - 80
  • [30] Quantifying uncertainty in state and parameter estimation
    Parlitz, Ulrich
    Schumann-Bischoff, Jan
    Luther, Stefan
    PHYSICAL REVIEW E, 2014, 89 (05):