Systematic variational method for statistical nonlinear state and parameter estimation

被引:24
|
作者
Ye, Jingxin [1 ]
Rey, Daniel [1 ]
Kadakia, Nirag [1 ]
Eldridge, Michael [1 ]
Morone, Uriel I. [1 ]
Rozdeba, Paul [1 ]
Abarbanel, Henry D. I. [1 ,2 ]
Quinn, John C. [3 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[3] Intellisis Corp, San Diego, CA 92121 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
DATA ASSIMILATION; ALGORITHM;
D O I
10.1103/PhysRevE.92.052901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In statistical data assimilation one evaluates the conditional expected values, conditioned on measurements, of interesting quantities on the path of a model through observation and prediction windows. This often requires working with very high dimensional integrals in the discrete time descriptions of the observations and model dynamics, which become functional integrals in the continuous-time limit. Two familiar methods for performing these integrals include (1) Monte Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative corrections to the dominant contributions. We attend here to aspects of the Laplace approximation and develop an annealing method for locating the variational path satisfying the Euler-Lagrange equations that comprises the major contribution to the integrals. This begins with the identification of the minimum action path starting with a situation where the model dynamics is totally unresolved in state space, and the consistent minimum of the variational problem is known. We then proceed to slowly increase the model resolution, seeking to remain in the basin of the minimum action path, until a path that gives the dominant contribution to the integral is identified. After a discussion of some general issues, we give examples of the assimilation process for some simple, instructive models from the geophysical literature. Then we explore a slightly richer model of the same type with two distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Variational State and Parameter Estimation
    Courts, Jarrad
    Hendriks, Johannes
    Wills, Adrian
    Schon, Thomas B.
    Ninness, Brett
    IFAC PAPERSONLINE, 2021, 54 (07): : 732 - 737
  • [2] A method for simultaneous state and parameter estimation in nonlinear systems
    Haessig, D
    Friedland, B
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 947 - 951
  • [3] Nonlinear Parameter Estimation in Statistical Manifolds
    Wang, Xuezhi
    Cheng, Yongqiang
    Moran, Bill
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 101 - 104
  • [4] Parameter estimation of nonlinear map based on second-order discrete variational method
    Cao Xiao-Qun
    ACTA PHYSICA SINICA, 2013, 62 (08)
  • [5] Parameter Estimation with Constraints Based on Variational Method
    Shi, Wen-ming
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2010, 9 (01) : 105 - 108
  • [6] NONLINEAR METHOD FOR PARAMETER ESTIMATION.
    Shchetilov, S.I.
    Isaiko, O.M.
    Cosmic Research (English translation of Kosmicheskie Issledovaniya), 1981, 19 (02): : 144 - 147
  • [7] A Method on Parameter Estimation of Nonlinear Systems
    Horio, Makoto
    Moriomto, Jiro
    Tabuchi, Toshiaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1004 - 1007
  • [8] A variational method for parameter estimation in a logistic spatial regression
    Hardouin, Cecile
    SPATIAL STATISTICS, 2019, 31
  • [9] State and parameter estimation in solenoid nonlinear equations
    Da Pelo, Paolo
    Mazzia, Francesca
    Mininni, Rosa Maria
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02): : 809 - 818
  • [10] Nonlinear Reduced Models for State and Parameter Estimation
    Cohen, Albert
    Dahmen, Wolfgang
    Mula, Olga
    Nichols, James
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 227 - 267