Nonlinear Parameter Estimation in Statistical Manifolds

被引:0
|
作者
Wang, Xuezhi [1 ]
Cheng, Yongqiang [2 ]
Moran, Bill [3 ]
机构
[1] Univ Melbourne, Melbourne Sch Engn, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[2] Natl Univ Def Technol, Sch Elect Sci & Engn, Beijing, Peoples R China
[3] Univ Melbourne, Melbourne Sch Engn, Def Sci Inst, Melbourne, Vic 3010, Australia
关键词
GEOMETRY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many nonlinear parameter estimation problems can be described by the class of curved exponential families. The latter are fundamental concept in the framework of Information Geometry. This paper shows that when a closed-form statistical model is available the problem can be mapped onto the corresponding statistical manifolds via fixed parameterizations and thus solved optimally through a manifold gradient method. The solution process involves a dual projection which iteratively operates under the e-connection and m-connection in the flat manifolds with the coordinate systems in which the Cramer Rao Bound is attained. An example of tracking a moving target by two bearings-only sensors with location uncertainties is presented to demonstrate the efficiency and optimality of this manifold based method as well as the associated geometrical interpretation.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 50 条
  • [1] Optimal Nonlinear Estimation in Statistical Manifolds with Application to Sensor Network Localization
    Cheng, Yongqiang
    Wang, Xuezhi
    Moran, Bill
    [J]. ENTROPY, 2017, 19 (07):
  • [2] Direct calculation methods for parameter estimation in statistical manifolds of finite discrete distributions
    Hayashi, Y
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (07) : 1486 - 1492
  • [3] Direct calculation methods for parameter estimation in statistical manifolds of finite discrete distributions
    Japan Advanced Inst of Science and, Technology, Ishikawa-ken, Japan
    [J]. IEICE Trans Fund Electron Commun Comput Sci, 7 (1486-1492):
  • [4] Systematic variational method for statistical nonlinear state and parameter estimation
    Ye, Jingxin
    Rey, Daniel
    Kadakia, Nirag
    Eldridge, Michael
    Morone, Uriel I.
    Rozdeba, Paul
    Abarbanel, Henry D. I.
    Quinn, John C.
    [J]. PHYSICAL REVIEW E, 2015, 92 (05):
  • [5] STATISTICAL PREDICTION OF DRUG STABILITY BASED ON NONLINEAR PARAMETER-ESTIMATION
    KING, SYP
    KUNG, MS
    FUNG, HL
    [J]. JOURNAL OF PHARMACEUTICAL SCIENCES, 1984, 73 (05) : 657 - 662
  • [6] Parameter Estimation for Observed Diffusions in Manifolds
    Ng, S. K.
    Caines, P. E.
    Chen, H. F.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (02) : 129 - 140
  • [7] On nonlinear parameter estimation
    Magnevall, M.
    Josefsson, A.
    Ahlin, K.
    [J]. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 2761 - 2775
  • [8] NONLINEAR PARAMETER ESTIMATION
    STEEN, NM
    BYRNE, GD
    [J]. SIAM REVIEW, 1973, 15 (01) : 262 - &
  • [9] NONLINEAR PARAMETER ESTIMATION
    MILLER, AL
    [J]. OPERATIONAL RESEARCH QUARTERLY, 1972, 23 (03) : 393 - &
  • [10] Statistical parameter estimation of dielectric materials using MCMC for nonlinear hierarchical models
    Kojima, Fumio
    Banks, H. Thomas
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2016, 52 (1-2) : 49 - 54