Statistical parameter estimation of dielectric materials using MCMC for nonlinear hierarchical models

被引:0
|
作者
Kojima, Fumio [1 ]
Banks, H. Thomas [2 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Kobe, Hyogo, Japan
[2] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC USA
关键词
Inverse problem; nondestructive evaluation; electromagnetic interrogation; polarization;
D O I
10.3233/JAE-162207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with material interrogation methods for homogeneous dielectric materials using statistical inversion. Frequency dispersions for homogeneous dielectric materials can be described by a classical Lorentz model. Taking into account that the reflection coefficients are indirectly measurable, the signal response model is given by a complex reflectance at the interface between free space and the dielectric medium. The problem considered here is to quantify uncertainties of the estimated dielectric parameters from the measurements obtained by a reflective interferometer. A computational method using Hamiltonian Monte Carlo sampling based on nonlinear hierarchical models is tested.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Parameter Estimation of Statistical Models Using Convex Optimization
    Jiang, Hui
    Li, Xinwei
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 115 - 127
  • [2] Nonlinear Parameter Estimation in Statistical Manifolds
    Wang, Xuezhi
    Cheng, Yongqiang
    Moran, Bill
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 101 - 104
  • [3] Efficient parameter generation for constrained models using MCMC
    Kravtsova, Natalia
    Chamberlin, Helen M.
    Dawes, Adriana T.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [4] Efficient parameter generation for constrained models using MCMC
    Natalia Kravtsova
    Helen M. Chamberlin
    Adriana T. Dawes
    [J]. Scientific Reports, 13 (1)
  • [5] Iterative Parameter Estimation for Photovoltaic Cell Models by Using the Hierarchical Principle
    Xiangxiang Meng
    Yan Ji
    Junwei Wang
    [J]. International Journal of Control, Automation and Systems, 2022, 20 : 2583 - 2593
  • [6] Iterative Parameter Estimation for Photovoltaic Cell Models by Using the Hierarchical Principle
    Meng, Xiangxiang
    Ji, Yan
    Wang, Junwei
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (08) : 2583 - 2593
  • [7] Parameter estimation of nonlinear Muskingum models using genetic algorithm
    Mohan, S.
    [J]. Journal of Hydraulic Engineering, 1997, 123 (02): : 137 - 142
  • [8] Parameter estimation of nonlinear muskingum models using genetic algorithm
    Mohan, S
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 137 - 142
  • [9] MCMC Techniques for Parameter Estimation of ODE Based Models in Systems Biology
    Valderrama-Bahamondez, Gloria, I
    Froehlich, Holger
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [10] Estimation of Bayes Factors in a Class of Hierarchical Random Effects Models Using a Geometrically Ergodic MCMC Algorithm
    Doss, Hani
    Hobert, James P.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) : 295 - 312